
PVCS®

Dimensions
™

Developer’s Toolkit Reference Guide

Edition 5.1

Copyright © 2002 MERANT. All rights reserved. Printed in the U.S.A.

INTERSOLV and PVCS are registered trademarks, and MERANT, PVCS Change
Manager, PVCS Dimensions, PVCS Content Manager, PVCS Metrics, PVCS
Pulse, PVCS Repudiator, PVCS TeamLink, PVCS Tracker, PVCS TrackerLink,
PVCS Version Manager, PVCS VM Server and WishLink are trademarks of
MERANT. All other trademarks are the property of their respective owners.

ACKNOWLEDGEMENT. PVCS® Dimensions™ is implemented using the
ORACLE® relational database management system. ORACLE is a registered
trademark of Oracle Corporation, Redwood City, California.

No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied,
reproduced, transmitted, transcribed, or reduced to any electronic medium
or machine-readable form without prior written consent of MERANT.

Licensees may duplicate the software product user documentation
contained on a CD-ROM, but only to the extent necessary to support the
users authorized access to the software under the license agreement. Any
reproduction of the documentation, regardless of whether the
documentation is reproduced in whole or in part, must be accompanied by
this copyright statement in its entirety, without modification.

U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the
Software and the Documentation were developed at private expense, that
no part is in the public domain, and that the Software and Documentation
are Commercial Computer Software provided with RESTRICTED RIGHTS
under Federal Acquisition Regulations and agency supplements to them.
Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in, among other sources, DFARS 252.227-7015 and
227.7202, or subparagraphs (c)(1) and (2) of the Commercial Computer
Software Restricted Rights at FAR 52.227-19, as applicable. Contractor is
MERANT, 3445 NW 211th Terrace, Hillsboro Oregon 97124. Rights are
reserved under copyright laws of the United States with respect to
unpublished portions of the Software.

MERANT

3445 NW 211th Terrace

Hillsboro, Oregon 97124

3

Table of Contents

Welcome to Dimensions . 9

Typographical Conventions. 10

Ordering Hard-Copy Manuals . 11

Contacting Technical Support . 11

1 What is the Dimensions Toolkit Interface? 13

Overview . 14

Positioning Your Solutions within the DTK 14
Client Architecture. 15
Event Architecture . 16
Interactions between the Two Architectures. 16

Scope of the DTK Architecture . 17

2 Writing Dimensions DTK Applications. 19

Introduction . 20

DTK Return Codes . 20

DTK Data Structures . 22
PcmsObjStruct . 22
PcmsCallbackStruct . 23
PcmsObjAttrStruct . 23
PcmsObjAttrDefStruct . 24
PcmsRelTypeStruct . 25
PcmsRelStruct . 26
PcmsUserRoleStruct . 27
PcmsPendingUserStruct . 28
PVCS Dimensions Developer’s Toolkit Reference Guide

4 Table of Contents
PcmsRoleStruct . 28
PcmsLcStruct . 29
PcmsTypeStruct . 29
PcmsPendStruct . 30
PcmsEventStruct . 30

DTK System Attribute Definitions . 31

DTK Constant Definitions . 36

Memory Allocation within the DTK . 37
Usage of the Functions . 37

3 DTK API Functions for C/C++ 41

Introduction . 45

Memory Allocation by DTK Functions. 45

PcmsSetIdleChecker - Install Idle Checker 46

PcmsConnect - Connect to Dimensions Database 48

PcmsDisconnect - Disconnect from a Dimensions
Database . 50

PcmsExecCommand - Execute Dimensions Command
Synchronously . 52

PcmsSetCallback - Set Dimensions API Server Callback 54

PcmsSetDbErrorCallback - Set Server Error Callback 57

PcmsSendCommand - Execute Dimensions Command
Asynchronously . 59

PcmsGetConnectDesc - Get Input File Descriptor 61

PcmsCheckMessages - Check Results of
Dimensions Command . 63

PcmsSetDirectory - Change Dimensions Default Directory . . 65

PcmsGetWsetObj - Get User's Current Workset 67
PVCS Dimensions Developer’s Toolkit Reference Guide

Table of Contents 5
PcmsSetWsetObj - Set User's Current Workset 69

PcmsObjGetRels - Get Dimensions Object Relationships. 70

PcmsObjGetBackRels - Get Dimensions Object Reverse
Relationships. 73

PcmsQuery - Find Dimensions Objects, returning Uids 76

PcmsObjInSecondary - Is Change Document
Object in Secondary Catalog . 81

PcmsFullQuery - Find Dimensions Objects,
returning Complete Objects . 82

PcmsPendGet - Retrieve Dimensions Objects
Pending for a User . 86

PcmsPendWhoGet - Retrieve Users for Object. 89

PcmsCntrlPlanGet - Get Dimensions Process
Model Information . 91

PcmsInitSpec - Get Dimensions Object Details
by Specification. 95

PcmsInitUid - Get Dimensions Object Details by Uid. 97

PcmsSetAttrs - Set Dimensions Object Attributes 99

PcmsGetAttrs - Get Dimensions Object Attributes 101

PcmsObjFree - Free Dimensions Object Structures 103

PcmsGetAttrDefNum - Get Attribute Definition Number. . . . 104

PcmsAttrDefInit - Get Attribute Definition 106

PcmsAttrGetLov - Get Attribute's List of Values 108

PcmsAttrValidate - Validate an Attribute Value 112

PcmsLovFree - Free a List of Values . 114

PcmsGetUserRoles - Obtain User Role Structures 115
PVCS Dimensions Developer’s Toolkit Reference Guide

6 Table of Contents
PcmsGetPendingUsers - Obtain Pending User Structures . . . 118

PcmsGetRSNames - Obtain Role Section
Names for a Product . 120

PcmsGetRSAttrs - Retrieve Attribute Numbers
in a Role Section . 122

PcmsGetUserRelTypes - Obtain User Relationship
Subtypes. 125

PcmsPopulate - Populate an Object's Attributes Values 127

PcmsGetCandidates - Retrieve Candidates for Delegation . . 129

PcmsGetAttrFile - Get Change Document Descriptions 131

PcmsEvntFree – Free Memory . 134

PcmsEvntMalloc – Allocate Memory . 135

PcmsEvntCalloc – Allocate Zero Initialized Memory 136

PcmsEvntRealloc – Re-allocate Memory 137

PcmsGetCommandLine – Get the Dimensions Command . . . 138

Attribute Macros . 139
Initialize PcmsObjStruct attrs . 139
Add attrDef Structures . 139
Single-Value Attributes (SVA) . 140
Multi-Value Attributes (MVA) . 141

4 DTK API Functions for Win32 Client Installations . . 143

Introduction . 144

Building Client Applications . 144

Sample Code Fragment . 145

PcmsClntApiConnect - Connect to a Dimensions Database. . 146
PVCS Dimensions Developer’s Toolkit Reference Guide

Table of Contents 7
PcmsClntApiSilentConnect - Connect Silently
to a Dimensions Database . 147

PcmsClntApiDisconnect - Disconnect from a
Dimensions Database . 149

PcmsClntApiGetLastError - Get the Last
Dimensions Message . 150

PcmsClntApiGetLastErrorEx - Get the Last
Dimensions Message . 152

PcmsClntApiModeBinary - Set File Transfer Mode to
Binary . 154

PcmsClntApiModeText - Set File Transfer Mode to
ASCII . 156

PcmsClntApiFree – Free Memory . 158

PcmsClntApiExecCommand - Execute a
Dimensions Command . 159

Additional Supported DTK Functions. 160

5 Dimensions Events Callout Interface 161

Description . 162

Shared Libraries . 162

Public Function Call . 163

Event Callout Interface . 164
Validate Events. 165
Pre-events. 165
Post-events . 165
Event Types. 166

Determining the Event you want . 168

First and Second Event Calls . 169
PVCS Dimensions Developer’s Toolkit Reference Guide

8 Table of Contents
Event Call Summary . 171

Writing a DTK Callout Event . 171
Is an Event the Solution for you? 172
Designing your Event . 173
Writing your Event . 175

DTK Event Internals . 176

Changing System Attributes on Validate Events 179

Changing User Attributes on Validate Events 180

Recommendations on how to Change Attribute Values 180

Calling DTK Functions within Events. 181
Specialist DTK Event Functions . 181
Unsupported DTK Function Calls from within an

Event . 182

Using the ptrEventInfo in Events. 182

Event Examples. 184

Events - A Final Word and a Warning 184

A Known DTK Event Issues . 185

Missing Events . 186

Index . 187
PVCS Dimensions Developer’s Toolkit Reference Guide

9

Welcome to Dimensions

Thank you for choosing MERANT™ PVCS® Dimensions™, a
powerful process management and change control system that
will revolutionize the way you develop software. Dimensions
helps you organize, manage, and protect your software
development projects on every level—from storing and tracking
changes to individual files, to managing and monitoring an
entire development cycle.

Purpose of this
manual

The purpose of this manual is to detail how you use the
Dimensions Developer’s Toolkit (DTK) to access and manipulate
objects that are held within a PVCS Dimensions repository. This
document covers descriptions of the interface functions that the
DTK provides, and details on the Event Callout Interface that
enables you to perform customizations and integrations around
Dimensions commands.

The intended audience is users who are well versed in both
Dimensions concepts and the C programming language.

For more
information

Refer to the PVCS Dimensions Getting Started Guide for a
description of the Dimensions documentation set, a summary of
the ways to work with Dimensions, and instructions for accessing
the Online Help.

Edition status This is Edition 5.1 of the PVCS Dimensions Developer’s Toolkit
Reference Guide. The information in this edition applies to
Release 7.1 of PVCS Dimensions or later. This edition supersedes
earlier editions of this manual.
PVCS Dimensions Developer’s Toolkit Reference Guide

10 Welcome to Dimensions
Typographical Conventions
The following typographical conventions are used in the online
manuals and online help. These typographical conventions are
used to assist you when using the documentation; they are not
meant to contradict or change any standard use of typographical
conventions in the various product components or the host
operating system.

Convention Explanation

italics Introduces new terms that you may not be
familiar with and occasionally indicates
emphasis.

bold Emphasizes important information and field
names.

UPPERCASE Indicates keys or key combinations that you can
use. For example, press the ENTER key.

monospace Indicates syntax examples, values that you
specify, or results that you receive.

monospaced
italics

Indicates names that are placeholders for values
you specify; for example, filename.

monospace
bold

Indicates the results of an executed command.

vertical rule | Separates menus and their associated
commands. For example, select File | Copy
means to select Copy from the File menu.

Also, indicates mutually exclusive choices in a
command syntax line.

brackets [] Indicates optional items. For example, in the
following statement: SELECT [DISTINCT],
DISTINCT is an optional keyword.

. . . Indicates command arguments that can have
more than one value.
PVCS Dimensions Developer’s Toolkit Reference Guide

Ordering Hard-Copy Manuals 11
Ordering Hard-Copy Manuals
As part of your Dimensions license agreement, you may print
and distribute as many copies of the PVCS Dimensions manuals
as needed.

If you do not want to print each of these online manuals, you
can order hard-copy versions from MERANT. To order, please
contact your sales representative for assistance.

Contacting Technical Support
MERANT provides technical support for all registered users of
this product, including limited installation support for the first
30 days. If you need support after that time, contact MERANT
using one of the methods listed in any of the Installation Guides,
the Getting Started Guide, or the Online Help.

Technical support is available 24 hours a day, 7 days a week, with
language-specific support available during local business hours.
For all other hours, technical support is provided in English.

Support via the
web, E-mail, and
telephone

SupportNet Customers can report problems and ask questions on
the SupportNet web page: http://support.merant.com/

To submit an issue, click on the Report a Problem link and follow
the instructions. You can also submit issues via E-mail or phone.
Refer to the Installation Guides, Getting Started Guide, or Online
help for a list of contact numbers, including numbers to call for
local language support.

The SupportNet Web site contains up-to-date technical support
information. Our SupportNet Community shares information via
the Web, automatic E-mail notification, newsgroups, and
regional user groups.
PVCS Dimensions Developer’s Toolkit Reference Guide

http://support.merant.com

12 Welcome to Dimensions
SupportNet Online is our global service network that provides
access to valuable tools and information for an online community
for users. SupportNet Online also includes a KnowledgeBase,
which contains how-to information and allows you to search on
keywords for technical bulletins. You can also download fix
releases for your PVCS products.
PVCS Dimensions Developer’s Toolkit Reference Guide

13
1 What is the Dimensions
Toolkit Interface?

In this Chapter

For this Section… See Page…

Overview 14

Positioning Your Solutions within
the DTK

14

Scope of the DTK Architecture 17
PVCS Dimensions Developer’s Toolkit Reference Guide

14 Chapter 1 What is the Dimensions Toolkit Interface?
Overview
The Dimensions Developer’s Toolkit Interface (DTK) is a powerful
C and C++ Applications Programming Interface (API) that allows
you to access data held within a PVCS Dimensions repository.

The DTK provides a way in which you can:

■ design and implement your own applications that can
interact with Dimensions

■ implement your own specific customizations using a rich
event callout interface.

This chapter takes you through the architecture of the DTK and
how you can use it to expand on the functionality offered by
Dimensions.

Positioning Your Solutions within the DTK
The DTK provides two comprehensive architectures that allows
you to integrate your solutions with Dimensions in the following
ways:

1 As a separate client application that uses the DTK to access
and manipulate objects held within a Dimensions repository

2 As a rich event callout interface that allows you to perform
your own customized operations when certain Dimensions
commands are run.

When you are looking at your requirements keep in mind where
in the DTK architecture you wish to position your solution. If, for
example, you have a requirement where you need to assess the
impact to one of your projects of implementing a number of
application changes (as cited in change documents), then you
would use the format for Client Architecture as stated in the
following subsection.
PVCS Dimensions Developer’s Toolkit Reference Guide

Positioning Your Solutions within the DTK 15
Client Architecture

This scheme enables you to use the DTK as an I/O interface into
the Dimensions repository. If, however, you wanted a specific
operation or action to be performed when certain Dimensions
commands are run, then you would use the Event Architecture
described below.

Using the Client Architecture you
would design an application that
would:

■ connect to your Dimensions
repository

■ query or manipulate the data
from that repository

■ disconnect from the repository
and take some action based on
that data.

User Application

PVCS Dimensions
Repository

DTK
Interface

Client Application interfacing
with a Dimensions repository
PVCS Dimensions Developer’s Toolkit Reference Guide

16 Chapter 1 What is the Dimensions Toolkit Interface?
Event Architecture

For more details on how events operate, please refer to Chapter
2, “Writing Dimensions DTK Applications,” on page 19.

Interactions between the Two
Architectures

When you design and implement a customization, using the
Event Architecture, this customization is applied to all the
standard Dimensions interfaces. This customization is also applied
to all those applications that you have developed using the Client
Architecture. Events, when they are deployed, literally become
part of the Dimensions product suite, and as a result are used by
all Dimensions components.

Using the Event Architecture you
can design a set of customizations
that are applied explicitly when a
user issues a certain Dimensions
command. A public interface is
provided that allows you to pass
information back and forth
between the event and the
Dimensions server. The result of this
is that you can manipulate the
outcome of the command in certain
ways.

PVCS Dimensions

Event Callout Interface

Event Callout
DTK

Event Data

External
Application
PVCS Dimensions Developer’s Toolkit Reference Guide

Scope of the DTK Architecture 17
Scope of the DTK Architecture
When you look at designing your applications for either of the
specific architectures described above, there are a number of
points that you must keep in mind:

■ DTK Applications using the Client Architecture

These applications are stand-alone utilities that interface
with the Dimensions repository via the use of PcmsConnect()
and other DTK functions.

■ DTK Applications using the Event Architecture

These applications interface with Dimensions via a public C
function call named userSuppliedFunction(). These
applications are built as shared libraries that are dynamically
loaded by Dimensions. These applications are able to share
information with the Dimensions server and so do not need
to call PcmsConnect() or PcmsDisconnect().

For events to become active they only need to be deployed
on the Dimensions server. As a result of this, each client
which accesses that Dimensions server will use these events.
You do not need to be concerned with deploying and
controlling events on multiple client installations.
PVCS Dimensions Developer’s Toolkit Reference Guide

18 Chapter 1 What is the Dimensions Toolkit Interface?
PVCS Dimensions Developer’s Toolkit Reference Guide

19
2 Writing Dimensions DTK
Applications

In this Chapter

For this Section… See Page…

Introduction 20

DTK Return Codes 20

DTK Data Structures 22

DTK System Attribute Definitions 31

DTK Constant Definitions 32

Memory Allocation within the DTK 37
PVCS Dimensions Developer’s Toolkit Reference Guide

20 Chapter 2 Writing Dimensions DTK Applications
Introduction
This chapter outlines the data structures, manifest constants and
return codes that are used by the DTK. These structures and
constants are defined in the provided include file pcms_api.h in
the directory:

■ “<Dimensions_ROOT>/pcms_api/” for UNIX

■ “<Dimensions_ROOT>\pcms_api\” for Windows.

Any source file which references DTK functions or constants must
include this file.

NOTE Starting with Dimensions 7.1, the pcms_api.lib and
pcms_api.so library files have been renamed to
pcms_apiXX.lib and pcms_apiXX.so, where XX is the version
number of the Dimensions release. For example, for Dimensions
7.1, the files are named pcms_api71.lib and pcms_api71.so.

DTK Return Codes
In general when you call a DTK function the results of that
function call can be determined by the return code given. There
are three codes that a DTK function can return:

PCMS_OK which indicates that the function call
succeeded, and objects were processed (e.g. a
query returned some information).
PVCS Dimensions Developer’s Toolkit Reference Guide

DTK Return Codes 21
NOTE ErrorNo variables and ErrorStr variables will be set only
when an error occurs.

PCMS_FAIL which indicates that while the function call
succeeded, no objects were actually processed
(e.g. a query returned no objects).

PCMS_ERROR which indicates that an error occurred trying to
process the function call. If an error is
encountered, the reason for the error can be
assessed by examining the following variables.

int PcmsErrorNo
char *PcmsErrorStr

If the error occurred
due to a
programming error
e.g. invalid
parameters were
specified to a DTK
function, these
variables will be set
detailing the reason
for the error.

int PcmsDbErrorNo
char *PcmsDbErrorStr

If the error occurred
due to a database
error e.g. the
database is full, these
variables will be set
detailing the reason
for the error.

PcmsDbErrorNo will
indicate the database
error number (if any).

PcmsDbErrorStr will
indicate the SQL error
string.
PVCS Dimensions Developer’s Toolkit Reference Guide

22 Chapter 2 Writing Dimensions DTK Applications
DTK Data Structures
The results of function calls are generally stored in the data
structures that are defined in the following sub-sections. These
structures represent the abstraction of Dimensions objects and
other information, and can be accessed via standard C
constructions.

PcmsObjStruct

Definition
typedef struct
{

int uid;
int objType; /* PCMS_ITEM or PCMS_PART or */

/* PCMS_CHDOC etc */
int typeUid;
char typeName[PCMS_L_TYPE_NAME + 1];
char productId[PCMS_L_PRODUCT_ID + 1];
char objId[PCMS_L_CD_ID + 1];
char variant[PCMS_L_VARIANT + 1];
char revision[PCMS_L_REVISION + 1];
char description[PCMS_L_DESCRIPTION + 1];
char userName[PCMS_L_USER + 1];
char status[PCMS_L_STATUS + 1];
char dateTime[PCMS_L_DATE_TIME + 1];
char isExtracted; /* 'Y' = Yes, 'N' = No */
int noAttrs; /* The number of pcms_defined*/

/* attributes for this object */
PcmsObjAttrStruct *attrs;

/* Pointer to the array of*/
/* pcms_defined attributes*/

} PcmsObjStruct;

Description

This is the generic structure used for Dimensions objects such as
items, parts, change documents and baselines. The type of object
is defined by the member field objType being set to a specific
constant (e.g. PCMS_ITEM). The *attrs pointer can be used to
access attribute information if it is defined.
PVCS Dimensions Developer’s Toolkit Reference Guide

DTK Data Structures 23
PcmsCallbackStruct

Definition
typedef struct PcmsCallbackStruct

{

PcmsCallbackProc callback;
void *clientData;

} PcmsCallbackStruct;

Description

This structure is used to hold information regarding registered
callbacks. For more information please refer to
PcmsSetCallback().

PcmsObjAttrStruct

Definition
typedef struct
{

int attr; /* Attribute number */
void *value; /* The value of the attribute. */

/* See section on Attribute */
/* Macros */

PcmsObjAttrDefStruct *attrDef;
/* Pointer to the definition */
/* of the attribute */

} PcmsObjAttrStruct;

Description

This structure is used to hold information regarding the
attributes that an object has. The attr member details the
attribute number, while the *attrDef pointer contains details on
the attribute definition. The value of the attribute is accessed via
the PcmsMvaGetVal() and PcmsSvaGetVal() attribute macros. For
more information about these macros please refer to the
“Attribute Macros” on page 139.
PVCS Dimensions Developer’s Toolkit Reference Guide

24 Chapter 2 Writing Dimensions DTK Applications
PcmsObjAttrDefStruct
Definition
typedef struct
{

int attr; /* Attribute number */
int valueMaxLen; /* The maximum length of the */

/* attribute */
char variable [PCMS_L_ATTR_VARIABLE + 1];

/*The attribute name */
char prompt [PCMS_L_ATTR_PROMPT + 1];

/* The screen prompt*/
char attrType; /* PCMS_ATTR_DATE = 'D' */

/* PCMS_ATTR_UNDEFINED = 'U' */
/* PCMS_ATTR_INTEGER = 'I' */
/* PCMS_ATTR_NUMBER = 'N' */
/* PCMS_ATTR_CHAR = 'C' */

char scope; /* PCMS_ATTR_ITEM='I' */
/* PCMS_ATTR_PART='P'*/

char display; /* Y or N */
char allRevisions; /* Y or N */
char manOpt; /* MANDATORY = 'Y' */

/* OPTIONAL = 'N' */
char fldUpd; /* 'Y' or 'N' */
char roleCheck [PCMS_L_ROLE + 1];
char uniqueVal; /* 'Y' *or 'N' /
char defaultVal[PCMS_L_ATTR_DEFAULT_VAL + 1];
char helpMess [PCMS_L_ATTR_HELP_MESS + 1];
char validationOn; /* Is validation enabled, */

/* Y or N */
int definedBy; /* PCMS_ATTR_PCMS/PROG/USER */
char hasLov; /* 'Y' or 'N'. List of Values */

/* must be used to set */
void **pp; /* Reserved */
char mva; /* 'Y' or 'N'.Multi-Valued */

/* use PcmsMva... macros to */
/* interpret. * /

char mvaType; /* not used currently */
char blockName [PCMS_L_ID + 1];

/* attr may belong to a */
/* display Block */

int blockColNo; /* Column number in the */
/* display block */

int displayWidth; /* Recommended display width */
int displayHeight; /* Recommended display height */
char multiLine;

/* 'Y' - use displayHeight ie. */
/* displayHeight > 0 */
/* 'N' - displayHeight not used */

continued
PVCS Dimensions Developer’s Toolkit Reference Guide

DTK Data Structures 25
char valueCase; /* 'L' - Lower 'U' - Upper, or */
/* 'M' - Mixed */

char catalogDisplay; /* 'Y' or 'N' */
} PcmsObjAttrDefStruct;

Description

This structure is used to hold information relating to the
attribute definition. Some of the fields for change documents
are currently hard-wired to the following values.

PcmsRelTypeStruct

Definition
typedef struct
{

int uid; /* of this relationship subType */
char name [PCMS_L_ID + 1];

/* Name for this rel subtype*/
int relType;

/* The parent relationship type */
/* eg.PCMS_REL_INFO */

char productId [PCMS_L_PRODUCT_ID + 1];
/* Product name */

} PcmsRelTypeStruct;

Description

This structure is used to hold information relating to the user-
defined types used in Dimensions. For example, ’change
document to change document’ relationships.

allRevisions 'N'

manOpt' 'N'

fldUpd 'Y'

roleCheck '\0'

uniqueVal 'N'
PVCS Dimensions Developer’s Toolkit Reference Guide

26 Chapter 2 Writing Dimensions DTK Applications
PcmsRelStruct

Definition
typedef struct
{

int uid;
int objType;
int relType;
int relSubTypeUid;

/* Refers to the uid field of a */
/* PcmsRelTypeStruct. For chdocs, */
/* users may setup up specialization's */
/* of the basic relTypes to add */
/* attributes,etc. See section on */
/* PcmsGetUserRels */

} PcmsRelStruct;

Description

This structure is used in conjunction with PcmsRelTypeStruct and
stores the relationships that an object has.
PVCS Dimensions Developer’s Toolkit Reference Guide

DTK Data Structures 27
PcmsUserRoleStruct

Definition
typedef struct
{

char user [PCMS_L_USER + 1]; /* User */
char role [PCMS_L_ROLE + 1]; /* Role */
char capability; /* The users capability in */

/* this role, either */
/* 'P' - Primary or */
/* 'S' - Secondary or */
/* 'L' - Leader */

char applyDeny; /* applyDeny flag not */
/* currently used */

char treeWalk; /* treeWalk flag not */
/* currently used */

char actionable;
/* PCMS_ACT_NOT_LEADER = '1' */
/* (Can't action not leader) */
/* PCMS_ACT_OK = '2' */
/* (Can action no leaders) */
/* PCMS_ACT_LEADER = '3' */
/* (Can action I am a leader) */

char fromTree; /* 'Y' This role was found */
/* from the Part Structure */
/* 'N' This role was delegated */
/* using the DLGC command */

} PcmsUserRoleStruct;

Description

This structure is used to hold information relating to role
assignments.
PVCS Dimensions Developer’s Toolkit Reference Guide

28 Chapter 2 Writing Dimensions DTK Applications
PcmsPendingUserStruct

Definition
typedef struct
{

char user [PCMS_L_USER+ 1]; /* User */
char role [PCMS_L_ROLE + 1]; /* Role */
char capability; /* The user's capability in */

/* role, either */
/* 'P' - Primary or */
/* 'S' - Secondary or */
/* 'L' – Leader */

char nextStatus [PCMS_L_STATUS + 1];
/* next possible status */

int nextPhase; /* next phase */
char actionable;

/* PCMS_ACT_NOT_LEADER = '1' */
/* (Can't action not leader) */
/* PCMS_ACT_OK = '2' */
/* (Can action no leaders) */
/* PCMS_ACT_LEADER = '3' */
/* (Can action I am a leader) */

} PcmsPendingUserStruct;

Description
This structure holds information relating to who can action an
object and to what states.

PcmsRoleStruct

Definition
typedef struct
{

char role [PCMS_L_ROLE + 1]; /* Role */
int uid; /* uid of the part */
char leader; /* 'Y' = Leader only role */

} PcmsRoleStruct;

Description

This structure holds information of the roles defined on a
Dimensions product.
PVCS Dimensions Developer’s Toolkit Reference Guide

DTK Data Structures 29
PcmsLcStruct

Definition
typedef struct
{

char normalPath;
int phase;
char status [PCMS_L_STATUS + 1];
char role [PCMS_L_ROLE + 1];

} PcmsLcStruct;

Description

This structure holds lifecycle definition information.

PcmsTypeStruct

Definition
typedef struct
{

int uid;
char productId [PCMS_L_PRODUCT_ID + 1];
char typeName [PCMS_L_TYPE_NAME + 1];
int objType; /* PCMS_PART, PCMS_ITEM, */

/* PCMS_CHDOC etc*/
char lifecycle [PCMS_L_ID + 1];
char typeDescription [PCMS_L_DESCRIPTION + 1];
char superType; /* '1', '2', '3', or '4' for */

/* chdocs only */
} PcmsTypeStruct;

Description

This structure holds object type definition information.
PVCS Dimensions Developer’s Toolkit Reference Guide

30 Chapter 2 Writing Dimensions DTK Applications
PcmsPendStruct

Definition
typedef struct
{

int objUid;
int objType;
char capability; /* 'P' - Primary, */

/* 'S'- Secondary, */
/* 'L' - Leader*/

char actionable; /* PCMS_ACT_NOT_LEADER = '1'*/
/* (can't action not leader), */
/* PCMS_ACT_OK = '2' */
/* (Can action no leaders), */
/* PCMS_ACT_LEADER = '3' */
/* (Can action I am a leader) */

} PcmsPendStruct;

Description
This structure holds object pending information.

PcmsEventStruct
Definition
typedef struct
{

char *database; /* PCMS ORACLE database */
/* identification */

char *baseDB; /* PCMS Base Database */
int eventId; /* PCMS_EVENT_XXX */

/* See userSuppliedFunction */
int objType; /* PCMS_ITEM, PCMS_PART, */

/* PCMS_CHDOC */
int noAttrsChanged; /*The number of attributes */

/* that changed */
PcmsObjAttrStruct *attrsChanged;

/* Attribute number of field */
/* that changed */

int whenCalled; /* PCMS_EVENT_VALIDATE_OP, */
/* PCMS_EVENT_PRE_OP or */
/* PCMS_EVENT_POST_OP */

} PcmsEventStruct;
PVCS Dimensions Developer’s Toolkit Reference Guide

DTK System Attribute Definitions 31
Description

This structure is used exclusively for events and defines which
event is being fired and with what parameters.

DTK System Attribute Definitions
A Dimensions object can have two kinds of attributes:

■ User-defined attributes

These are attributes defined by you in the process model.

■ System-defined attributes

These are attributes definitions that are internal to
Dimensions. These attributes are provided to allow you to
access information that might be useful.

The table below details the system attributes that are available
for each object type.

NOTE The number of system-defined attributes are defined by
the constant PCMS_NUM_<objtype>_ATTRS

e.g. PCMS_NUM_ITEM_ATTRS.
PVCS Dimensions Developer’s Toolkit Reference Guide

32 Chapter 2 Writing Dimensions DTK Applications
O
b

je
ct

Ty

p
e

N
u

m
b

er
 o

f
Sy

st
em

A
tt

ri
b

u
te

s

A
tt

ri
b

u
te

R

ef
er

en
ce

D
ef

in
it

io
n

PCMS_ : PCMS_NUM_ : PCMS_ATTR_ :

BASELINE BLN_ATTRS TEMPLATE Template name used to
create the baseline

BASELINE_TYPE The type of baseline
created

1 = Design

2 = Release

3 = Archive

SENDER_ID This attribute is only
populated if this baseline
was created as a result of
replication. This will
correspond to the database
that sent the baseline.

BASELINE_METHOD Indicates how the baseline
was created. Possible
values are:

■ Created = Created via
CBL

■ Revised = Created via
CRB

■ Merged = Created via
CMB

CREATE_DATE Create date of the baseline

CHDOC CHD_ATTRS CHSEQ Sequence number of the
change document

CREATE_DATE Create date of the change
document
PVCS Dimensions Developer’s Toolkit Reference Guide

DTK System Attribute Definitions 33
ORIGINATOR Originator of the change
document

NO_ACTIONS Number of actions on the
change document

SUPER_TYPE Super type of the change
document

PHASE Current phase of the
change document

UPDATE_DATE Update date of the change
document

LIFECYCLE Lifecycle assigned to the
change document

ITEM ITEM_ATTRS FORMAT Item format

FILENAME Workset filename (current
workset)

FILE_VERSION File version in the library

ITEM_SPEC_UID Item spec uid

DIR_UID Workset directory uid

LIB_FILENAME Library item filename

LIB_CHECKSUM Library item file checksum

LIB_FILE_LENGTH Length of the item file in
the library

CHECKSUM Checksum of the workset
file

SHARED_BRANCH This attribute is reserved
for future use

FILE_LENGTH Length of the workset file

O
b

je
ct

Ty

p
e

N
u

m
b

er
 o

f
Sy

st
em

A
tt

ri
b

u
te

s

A
tt

ri
b

u
te

R

ef
er

en
ce

D
ef

in
it

io
n

PCMS_ : PCMS_NUM_ : PCMS_ATTR_ :
PVCS Dimensions Developer’s Toolkit Reference Guide

34 Chapter 2 Writing Dimensions DTK Applications
EDITABLE If the item is editable

COMPRESSED If the item is compressed

DIRPATH Workset directory path

USER_FILENAME The user filename resulting
from check out (extract),
update, check in (return),
etc., operations

REVISED_DATE Item’s last revised date
(Julian date format)

CREATE_DATE Date of item creation

ORIGINATOR Who created the item

STATUS Status of the item

PHASE The item’s current phase

LIFECYCLE Lifecycle id that is followed
by the item

SENDER_ID This attribute is only
populated if this item was
created as a result of
replication. If an item has
been remotely replicated,
then this will correspond to
the database that sent the
item. If an item has been
replicated locally, then this
will correspond to the
replication configuration
identifier.

PART PART_ATTRS PARTNO Part Number

O
b

je
ct

Ty

p
e

N
u

m
b

er
 o

f
Sy

st
em

A
tt

ri
b

u
te

s

A
tt

ri
b

u
te

R

ef
er

en
ce

D
ef

in
it

io
n

PCMS_ : PCMS_NUM_ : PCMS_ATTR_ :
PVCS Dimensions Developer’s Toolkit Reference Guide

DTK System Attribute Definitions 35
LOCALNO Local Part Number

PHASE Part Phase

WORKSET WORKSET_ATTRS WS_DIR User’s default workset
directory

TRUNK If this is a trunk workset

ENFORCE_REV If revision generation is
enforced

PHASE The workset’s current
phase

USER USER_ATTRS GROUP Additional user properties
which are defined when
the user is created.

FULL_USERNAME

PHONE

DEPT

SITE

O
b

je
ct

Ty

p
e

N
u

m
b

er
 o

f
Sy

st
em

A
tt

ri
b

u
te

s

A
tt

ri
b

u
te

R

ef
er

en
ce

D
ef

in
it

io
n

PCMS_ : PCMS_NUM_ : PCMS_ATTR_ :
PVCS Dimensions Developer’s Toolkit Reference Guide

36 Chapter 2 Writing Dimensions DTK Applications
DTK Constant Definitions
The following constant definitions are used within the DTK to
represent Dimensions objects, relationships and phases.

■ Object types (i.e. objType)

Object types are constants used in the DTK to indicate classes
of objects (e.g. items).

■ Relationships (i.e. relType)

Relationship types are constants used in the DTK to indicate
relationships between objects (e.g. usage).

Constant Object Definition

PCMS_BASELINE Dimensions Baselines

PCMS_CHDOC Dimensions Change
Document

PCMS_CUSTOMER Dimensions Customers

PCMS_ITEM Dimensions Items

PCMS_PART Dimensions Design Parts

PCMS_USER Dimensions Users

PCMS_WORKSET Dimensions Worksets

Constant Relationship Definition

PCMS_REL_AFF Affected

PCMS_REL_BREAKDOWN Owner

PCMS_REL_DEP Dependent

PCMS_REL_DERIVED Built item

PCMS_REL_INFO Information

PCMS_REL_IRT In Response To

PCMS_REL_OWN Same as for
PCMS_REL_BREAKDOWN

continued
PVCS Dimensions Developer’s Toolkit Reference Guide

Memory Allocation within the DTK 37
■ Phases

Phases are generic indicators that are used to show where a
particular object is in its lifecycle. Please refer to the related
document “PVCS® Dimensions™ - Concepts Guide” for more
information.

Memory Allocation within the DTK
Some platforms, such as Windows NT, require that the shared
library that allocated memory is also responsible for freeing that
memory. Because of this a number of wrapper functions to the
standard C memory functions have been provided.

Usage of the Functions
■ General Usage of these Functions to Allocate Memory

If any application, either in events or clients, requires you to
allocate memory that will be used by DTK functions, then
you must use the wrappers as listed above. For example,

PCMS_REL_PRED Predecessor

PCMS_REL_SUCC Successor

PCMS_REL_TOP Top owner object

PCMS_REL_USE Usage

Constant Relationship Definition

DTK Function Wrapper to function

PcmsEvntFree() free()

PcmsEvntMalloc() malloc()

PcmsEvntCalloc() calloc()

PcmsEvntRealloc() realloc()
PVCS Dimensions Developer’s Toolkit Reference Guide

38 Chapter 2 Writing Dimensions DTK Applications
PcmsQuery() allows you to dynamically allocate memory to
the PcmsObjStruct attrs pointer to define user-defined filters.
This memory must be allocated and re-allocated via the use of
the wrappers listed above. If you are allocating memory
which is not used by the DTK, then you do not have to use
these wrappers. However, it is strongly recommended for
consistency that you use these wrappers for any memory
allocation that you make.

■ General Usage of these Functions to De-allocate Memory

If any memory has been allocated by the DTK, or by the
wrapper functions described above, then this memory must
be freed via PcmsEvntFree().

■ Within DTK client applications, any memory that has been
allocated by DTK functions, such as PcmsQuery(), must be
freed by the function PcmsEvntFree(). For example, if you
have the following call:

int*uids = 0;
intnoUids = 0;

if (PcmsQuery(conId, &queryObj,0,&noUIds,&uids)!=PCMS_OK)
PcmsEvntFree(uids);

then you would use PcmsEvntFree() function to free this
memory. You do not need to use these functions if you are
allocating memory which is not used by the DTK. However, to
be consistent in the memory functions which you do use, it is
strongly recommended that you use these functions for all
memory allocation and de-allocation.

■ Within DTK events these functions must always be used to
allocate or de-allocate memory. This includes both memory
usage with events and with reference to DTK function calls,
for example:

char *txt = (char *)PcmsEvntMalloc(15);

status = PcmsQuery(conId, &queryObj,0,&noUIds,&uids);
PcmsEvntFree(uids);
PcmsEvntFree(txt);
PVCS Dimensions Developer’s Toolkit Reference Guide

Memory Allocation within the DTK 39
To minimize the impact of any code changes, it is suggested that
you redefine the standard C functions to use the new functions
via the use of #define(s), for example:

and then recompile the event code. Please note, however, that
the prototype of the function PcmsEventCalloc() is not the same
as calloc(). Please consult Chapter 3 for more information.

NOTE These functions must always be used when freeing
memory that has been allocated by DTK function calls (such as
PcmsQuery()) both within events and within DTK client
programs.

The table shown below is provided as a guideline to help you
identify which functions and pointers are dynamically assigned
memory by the DTK, and what functions you should use to free
that memory. Ensure that you refer to the DTK function
description for more information on when this memory may be
assigned.

#define free PcmsEvntFree

#define malloc PcmsEvntMalloc

....

Function Name Pointer to Free Free via

PcmsAttrDefInit() PcmsObjAttrDefStruct *ptrDef PcmsEvntFree()

PcmsAttrGetLov() char ***ptrVal
char **ptrMess

PcmsLovFree()
PcmsEvntFree()

PcmsCntrlPlanGet() void **ptr PcmsEvntFree()

PcmsExecCommand() char **ptrResponse PcmsEvntFree()

PcmsFullQuery() PcmsObjStruct **ptrObjs PcmsObjFree()

PcmsGetAttrFile() char **ptrFile PcmsEvntFree()

PcmsGetAttrs() PcmsObjStruct *ptrObj PcmsObjFree()

PcmsGetCandidates() char ***ptrCans PcmsEvntFree()

PcmsGetPendingUsers() PcmsPendingUserStruct **ptrUsers PcmsEvntFree()

PcmsGetRSAttrs() int **ptrAttrs
char **ptrDefRole

PcmsEvntFree()
PVCS Dimensions Developer’s Toolkit Reference Guide

40 Chapter 2 Writing Dimensions DTK Applications
continued

PcmsGetRSNames() char **ptrMessage
char ***ptrVal

PcmsEvntFree()

PcmsGetUserRelTypes() PcmsRelTypeStruct **ptrRels PcmsEvntFree()

PcmsGetUserRoles() PcmsGetUserRoles **ptrRoles PcmsEvntFree()

PcmsObjGetBackRels() PcmsRelStruct **ptrRels PcmsEvntFree()

PcmsObjGetRels() PcmsRelStruct **ptrRels PcmsEvntFree()

PcmsPendGet() PcmsPendStruct **ptrPend PcmsEvntFree()

PcmsPendWhoGet() PcmsPendStruct **ptrPend PcmsEvntFree()

PcmsPopulate() PcmsObjStruct **ptrObj PcmsObjFree()

PcmsQuery() int **uids PcmsEvntFree()

PcmsClntApiGetLastErrorEx() char **errorBuffer PcmsClntApiFree()

Function Name Pointer to Free Free via
PVCS Dimensions Developer’s Toolkit Reference Guide

41
3 DTK API Functions for C/C++

In this Chapter

For this Section… See Page…

Introduction 45

Memory Allocation by DTK
Functions

45

PcmsSetIdleChecker - Install Idle
Checker

46

PcmsConnect - Connect to
Dimensions Database

48

PcmsDisconnect - Disconnect from
a Dimensions Database

50

PcmsExecCommand - Execute
Dimensions Command
Synchronously

52

PcmsSetCallback - Set Dimensions
API Server Callback

54

PcmsSetDbErrorCallback - Set
Server Error Callback

57

PcmsSendCommand - Execute
Dimensions Command
Asynchronously

59

PcmsGetConnectDesc - Get Input
File Descriptor

61

PcmsCheckMessages - Check
Results of Dimensions Command

63

PcmsSetDirectory - Change
Dimensions Default Directory

65
PVCS Dimensions Developer’s Toolkit Reference Guide

42 Chapter 3 DTK API Functions for C/C++
PcmsGetWsetObj - Get User's
Current Workset

67

PcmsSetWsetObj - Set User's
Current Workset

69

PcmsObjGetRels - Get Dimensions
Object Relationships

70

PcmsObjGetBackRels - Get
Dimensions Object Reverse
Relationships

73

PcmsQuery - Find Dimensions
Objects, returning Uids

76

PcmsObjInSecondary - Is Change
Document Object in Secondary
Catalog

81

PcmsFullQuery - Find Dimensions
Objects, returning Complete
Objects

82

PcmsPendGet - Retrieve
Dimensions Objects Pending for a
User

86

PcmsPendWhoGet - Retrieve Users
for Object

89

PcmsCntrlPlanGet - Get
Dimensions Process Model
Information

91

PcmsInitSpec - Get Dimensions
Object Details by Specification

95

PcmsInitUid - Get Dimensions
Object Details by Uid

97

PcmsSetAttrs - Set Dimensions
Object Attributes

99

PcmsGetAttrs - Get Dimensions
Object Attributes

101

For this Section… See Page…
PVCS Dimensions Developer’s Toolkit Reference Guide

43
PcmsObjFree - Free Dimensions
Object Structures

103

PcmsGetAttrDefNum - Get
Attribute Definition Number

104

PcmsAttrDefInit - Get Attribute
Definition

106

PcmsAttrGetLov - Get Attribute's
List of Values

108

PcmsAttrValidate - Validate an
Attribute Value

112

PcmsLovFree - Free a List of Values 114

PcmsGetUserRoles - Obtain User
Role Structures

115

PcmsGetPendingUsers - Obtain
Pending User Structures

118

PcmsGetRSNames - Obtain Role
Section Names for a Product

120

PcmsGetRSAttrs - Retrieve
Attribute Numbers in a Role
Section

122

PcmsGetUserRelTypes - Obtain
User Relationship Subtypes

125

PcmsPopulate - Populate an
Object's Attributes Values

127

PcmsGetCandidates - Retrieve
Candidates for Delegation

129

PcmsGetAttrFile - Get Change
Document Descriptions

131

PcmsEvntFree – Free Memory 134

PcmsEvntMalloc – Allocate
Memory

135

For this Section… See Page…
PVCS Dimensions Developer’s Toolkit Reference Guide

44 Chapter 3 DTK API Functions for C/C++
PcmsEvntCalloc – Allocate Zero
Initialized Memory

136

PcmsEvntRealloc – Re-allocate
Memory

137

PcmsGetCommandLine – Get the
Dimensions Command

138

Attribute Macros 139

For this Section… See Page…
PVCS Dimensions Developer’s Toolkit Reference Guide

Introduction 45
Introduction
This chapter describes each of the functions that are available in
the DTK for C/C++ programs. The description of each function
has the following components.

Before reading this chapter ensure that you have familiarized
yourself with the contents of the previous chapter because it
contains important information relating to data structures,
return codes and manifest constants that are referenced in this
chapter.

Memory Allocation by DTK Functions
A number of the DTK functions allocate memory to pointers that
then becomes the responsibility of the calling application to
free. On some operating systems, such as Windows NT and
Solaris, memory that has been allocated by a shared library must
be freed by that same shared library. You must free this memory
via the function call PcmsEvntFree(). If you do not use this
function, you may experience memory corruption. For more
information please refer to page 37.

Purpose What the function does

Prototype The function prototype

Parameters Description of the parameters used in the function

Return Codes Codes returned (please refer to “DTK Return
Codes” on page 20 for further details)

Sample Sample function call (if applicable)

Comments Additional relevant information (if applicable)

Related
Functions

Any related DTK function calls
PVCS Dimensions Developer’s Toolkit Reference Guide

46 Chapter 3 DTK API Functions for C/C++
PcmsSetIdleChecker - Install Idle Checker

Purpose

This function installs an application function to be called before
any Dimensions DTK functions are blocked on a read.
PcmsSetIdleChecker() will be called before making a connection
to a database, and may be useful in X applications to process
events from the X event queue while the Dimensions DTK is
waiting for input.

Prototype
int
PcmsSetIdleChecker (

int (*userIdleChecker)(int fd, int flag)
);

Parameters

Return Codes

PcmsSetIdleChecker() returns:

userIdleChecker is the address of the application function
which will be called.

PCMS_OK on success

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsSetIdleChecker - Install Idle Checker 47
Comments

The prototype of the idle checker function is:

int idleCheckerFunction(int fd, int flag)

where

If the flag is set to PCMS_MSG_WAIT, the function should only
return when data is available to be read from the file descriptor,
in which case the return value will be PCMS_OK. If the flag is set
to PCMS_MSG_NOWAIT, the function will return immediately
with a return value of PCMS_OK if data is available, and a return
value of PCMS_FAIL if no data is available.

For X applications, XtAddInput() can be used to set a callback
procedure when input is pending on fd.

fd is the file descriptor for the data connection that is
about to be read

flag is either PCMS_MSG_WAIT, or PCMS_MSG_NOWAIT.
PVCS Dimensions Developer’s Toolkit Reference Guide

48 Chapter 3 DTK API Functions for C/C++
PcmsConnect - Connect to Dimensions
Database

Purpose

This function provides you with a connection to the Dimensions
database (for example, intermediate) specified by the input
parameters. You can use this function to open multiple
connections on the same or different Dimensions databases. This
function will return a connectId (integer) that represents your
database connection. The database parameters reflect the same
values as you would specify for a PCMSDB symbol.

Prototype
int
PcmsConnect (

char *database,
char *password,
char *node

);

Parameters

database is the name of the Dimensions database to connect
to.

password is the password of the database. Use NULL if the
user is secure

node is the ORACLE Service Name assigned to the node
where the Oracle database is located.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsConnect - Connect to Dimensions Database 49
Return Codes

PcmsConnect() returns:

Comments

This function will not return until a successful connection has
been made, or an error is encountered while attempting the
connection.

If you wish to use the default Dimensions database for this user
(i.e. PCMSDB), then invoke PcmsConnect() with NULL parameters
for database, password and node.

This function will apply all the same pre-login user-verification
checks as if the user had typed ‘pcms’ at the command prompt.

Sample
/*
* connect to Dimensions
*
*/

int connect()
{

int conId = PCMS_ERROR
/* CONNECT to PCMSDB */
conId = PcmsConnect(NULL, NULL, NULL);
return conId;

}

Related Function

PcmsDisconnect().

int connectId on success

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

50 Chapter 3 DTK API Functions for C/C++
PcmsDisconnect - Disconnect from a
Dimensions Database

Purpose

This function disconnects from the Dimensions database as
specified by the connectId. This connectId must be a valid
connectId returned by PcmsConnect().

Prototype
int
PcmsDisconnect (

int connectId
);

Parameters

Return Codes

PcmsDisconnect() returns:

Sample
/* Disconnect and exit with success… */
(void) PcmsDisconnect(conID);
return (EXIT_SUCCESS);

connectId is the database connection identifier.

PCMS_OK on success

PCMS_ERROR on failure, and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsDisconnect - Disconnect from a Dimensions Database 51
Comments

On some operating systems if you do not call this function
before the application exits, the connection to the repository
may never terminate.

This function does not return until the disconnection is
complete.

Related Function

PcmsConnect().
PVCS Dimensions Developer’s Toolkit Reference Guide

52 Chapter 3 DTK API Functions for C/C++
PcmsExecCommand - Execute Dimensions
Command Synchronously

Purpose

This function sends a command to Dimensions and waits for it to
complete. See the related document “PVCS® Dimensions™ -
Command-Line Reference Guide” for information on legal syntax
for command mode applications.

Prototype
int
PcmsExecCommand (

int connectId,
char *command,
char **response

);

Parameters

connectId is the database connection identifier.

command is the command to be executed.

response is the address of a char* variable that will be set to
point to a dynamically allocated buffer containing
the diagnostic messages generated during the
execution of the command. It is the responsibility
of the calling application to free this buffer when
it is no longer required.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsExecCommand - Execute Dimensions Command Synchronously 53
Return Codes

PcmsExecCommand () returns:

Sample

See the examples on the release media.

Comments

All commands that have been queued previously to Dimensions
using PcmsSendCommand() will be processed first. When the
results from all those commands have been received, the current
command will be executed by Dimensions. Therefore the time
taken for PcmsExecCommand() to process a single simple
command may depend on the number of commands previously
queued to Dimensions using PcmsSendCommand().

Related Function

PcmsSendCommand().

PCMS_OK on success

PCMS_FAIL on the Dimensions command failing and sets
the response parameter.

PCMS_ERROR on other failures and sets PcmsErrorNo and
PcmsErrorStr
PVCS Dimensions Developer’s Toolkit Reference Guide

54 Chapter 3 DTK API Functions for C/C++
PcmsSetCallback - Set Dimensions API Server Callback

Purpose
This function sets up a callback function for the specified
connectId. The previous callback function and associated
clientData are returned in the ptrOldPcmsCallback pointer. The
callback function is used to register the results of Dimensions
commands submitted asynchronously by the function
PcmsSendCommand(). The callback function will be invoked
when a user calls PcmsCheckMessages().

Prototype
int
PcmsSetCallback (

int connectId,
PcmsCallbackStruct *ptrNewPcmsCallback,
PcmsCallbackStruct *ptrOldPcmsCallback

);

Parameters

connectId is the database connection identifier.

ptrNewPcmsCallback is a pointer to a structure of type
PcmsCallbackStruct. In this structure
the member field callback is a pointer
to the callback function. This function
must have the following prototype.

void sampleCallbackProc(
int connectId,
void *clientData,
int commandStatus,
int commandId,
char *commandStr,
char *callData,
...

)

continued
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsSetCallback - Set Dimensions API Server Callback 55
Return Codes

PcmsSetCallback () returns:

Comments

The parameters passed to the callback function are:

The clientData field of the
PcmsCallbackStruct will be passed as
one of the parameters to the callback
function. Specifying a NULL

ptrNewPcmsCallback parameter installs
the default callback for the
connection. This is a null function.

ptrOldPcmsCallback is a pointer to a structure of type
PcmsCallbackStruct, which will hold
the previous callback function and
client data. If this information is of no
interest then you may specify NULL.

PCMS_OK on success

PCMS_ERROR on failure and sets PcmsErrorNo and
PcmsErrorStr.

connectId is the database connection identifier.

clientData is the pointer value specified in the
PcmsCallbackStruct when the callback
function was installed using
PcmsSetCallback().

commandStatus is the status of the Dimensions command.

commandId is the unique command identifier associated
with the command. This value corresponds
to that returned by PcmsSendCommand().

continued
PVCS Dimensions Developer’s Toolkit Reference Guide

56 Chapter 3 DTK API Functions for C/C++
Related Functions

PcmsSendCommand(), PcmsCheckMessages(),
PcmsSetNoErrorCallback().

commandStr is the text of the command submitted.

callData is the text output that has resulted from the
command execution.

... is a variable argument list which is used
internally by Dimensions. You must not
attempt to use this list.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsSetDbErrorCallback - Set Server Error Callback 57
PcmsSetDbErrorCallback - Set Server Error
Callback

Purpose
This function sets up a callback function to be executed when
ORACLE is no longer available. The callback function will be
invoked when an application invokes an DTK function and the
DTK detects that the Dimensions repository is no longer
available. For example, this error may occur if the Dimensions
server has been powered down.

Prototype
int
PcmsSetDbErrorCallback (

int connectId,
PcmsCallbackStruct *ptrPcmsCallback

);

Parameters

connectId is the database connection identifier.

ptrPcmsCallback is a pointer to a structure of type
PcmsCallbackStruct. In this structure the
member field callback is a pointer to the
callback function. This function must have the
following prototype.

void sampleCallbackProc(
intconnectId,
void*clientData,
intcommandStatus,
intcommandId,
char*commandStr,
char*callData,
...

)

PVCS Dimensions Developer’s Toolkit Reference Guide

58 Chapter 3 DTK API Functions for C/C++
Return Codes

PcmsSetDbErrorCallback () returns:

Comments

The parameters passed to the callback function are:

Related Functions

PcmsSetCallback().

The clientData field of the PcmsCallbackStruct
will be passed as one of the parameters to the
callback function.

PCMS_OK on success

PCMS_ERROR on failure and sets PcmsErrorNo and
PcmsErrorStr.

connectId Database connection identifier associated
with the command.

clientData Null

commandStatus The Oracle error code detected.

commandId Zero

commandStr Null

callData The text output formatted to include the
ORACLE error code(s) that has resulted from
the command execution.

... is a variable argument list which is used
internally by Dimensions. You must not
attempt to use this list.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsSendCommand - Execute Dimensions Command Asynchronously 59
PcmsSendCommand - Execute Dimensions
Command Asynchronously

Purpose

This function sends a command to Dimensions and returns
without waiting for it to complete. See the related document
“PVCS® Dimensions™ - Command-Line Reference Guide” for
information on legal syntax for command mode applications.

Prototype
int
PcmsSendCommand (

int connectId,
char *command,
int *cmdId

);

Parameters

connectId is the database connection identifier.

command is the command to execute.

cmdId is a unique command identifier that is
returned to the user.
PVCS Dimensions Developer’s Toolkit Reference Guide

60 Chapter 3 DTK API Functions for C/C++
Return Codes

PcmsSendCommand () returns:

Comments

You must call the function PcmsCheckMessages() to check
whether the results of commands submitted using
PcmsSendCommand() are available. If results are available, your
callback function will be invoked (see PcmsSetCallback on page
54).

NOTE If your application does not call PcmsCheckMessages()
periodically, commands sent with PcmsSendCommand() may not
be executed by Dimensions.

The commands "EXIT" and "exit" will result in an error being
returned. A null string will also result in an error. Use
PcmsDisconnect() to terminate the connection with the
Dimensions Server.

Related Functions

PcmsSetCallback(), PcmsCheckMessages(), PcmsExecCommand().

PCMS_OK on success

PCMS_ERROR on failure and sets PcmsErrorNo and
PcmsErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsGetConnectDesc - Get Input File Descriptor 61
PcmsGetConnectDesc - Get Input File
Descriptor

Purpose

This function returns the input file descriptor for the specified
connection identifier. The purpose of this function is for an X
based application to add the file descriptor as an input for the X
application using XtAddInput(). When the X application receives
notification that there is input available on the file descriptor,
the application should call PcmsCheckMessages(). This will then
activate any callback functions that have been setup by
PcmsSetCallback(). Using this method of processing Dimensions
messages, the need for PcmsSetIdleChecker() is eliminated.

Prototype
int
PcmsGetConnectDesc (

int connectId
);

Parameters

Return Codes

PcmsGetConnectDesc () returns:

connectId is the database connection identifier.

int fd on success

PCMS_ERROR on failure and sets PcmsErrno and PcmsErrorStr
PVCS Dimensions Developer’s Toolkit Reference Guide

62 Chapter 3 DTK API Functions for C/C++
Comments

This function is applicable only to UNIX.

Related Functions

PcmsCheckMessages(), PcmsSetCallback().
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsCheckMessages - Check Results of Dimensions Command 63
PcmsCheckMessages - Check Results of
Dimensions Command

Purpose

This function may be used to check whether the results from
Dimensions commands previously submitted, using
PcmsSendCommand(), are available.

Prototype
int
PcmsCheckMessages (

int connectId,
int flag

);

Parameters

connectId is the database connection identifier.

flag is used to determine whether the operation is to be
blocking (PCMS_MSG_WAIT) or non-blocking
(PCMS_MSG_NOWAIT).
PVCS Dimensions Developer’s Toolkit Reference Guide

64 Chapter 3 DTK API Functions for C/C++
Return Codes

PcmsCheckMessages() returns:

Comments

If there are no commands being processed on this connection,
PCMS_FAIL will be returned. If there are outstanding commands,
the operation of this function will depend on the value of flag.

■ If flag is equal to PCMS_MSG_WAIT, the function will block
(by calling the function set with PcmsSetIdleChecker()) until
the results of the next command are available. The function
will then invoke the callback function (see PcmsSetCallback()
on page 54) and return PCMS_OK.

■ If flag equals PCMS_MSG_NOWAIT, the function will return
immediately if no results are available (after calling the
function set with PcmsSetCallback()), and the return value will
be PCMS_FAIL. If results are available, the callback function
will be invoked and the value PCMS_OK returned.

Related Functions

PcmsSendCommand(), PcmsSetCallback(), PcmsSetIdleChecker().

PCMS_OK results of a command are available and the
callback function has been invoked

PCMS_FAIL results of a command are not available (non-
blocking operation)

PCMS_ERROR on failure and sets PcmsErrorNo and
PcmsErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsSetDirectory - Change Dimensions Default Directory 65
PcmsSetDirectory - Change Dimensions
Default Directory

Purpose

This function changes the default directory of the Dimensions
process being managed by your application.

Prototype
int
PcmsSetDirectory (

int connectId,
char *new_directory

);

Parameters

Return Codes

PcmsSetDirectory() returns:

connectId is the database connection identifier.

new_directory is the full specification of the default
directory the Dimensions process is to use.

PCMS_OK on success

PCMS_ERROR on failure and sets PcmsErrorNo and
PcmsErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

66 Chapter 3 DTK API Functions for C/C++
Comments

The function does not change directory until all commands in the
PcmsSendCommand() queue (if any) are executed.

The directory change effects this connection only.

Related Functions

PcmsSendCommand().
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsGetWsetObj - Get User's Current Workset 67
PcmsGetWsetObj - Get User's Current
Workset

Purpose

This function returns the current workset in which this
Dimensions session is active.

Prototype
int
PcmsGetWsetObj (

int connectId,
int options,
PcmsObjStruct **ptrPcmsObjStruct);

Parameters

Return Codes

PcmsGetWsetObj() returns:

connectId is the database connection identifier.

options is not currently supported (use 0).

ptrPcmsObjStruct is the address of the workset object that
points to a dynamically allocated buffer
containing a PcmsObjStruct, whose
objType field will be PCMS_WORKSET.

PCMS_OK on success

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

68 Chapter 3 DTK API Functions for C/C++
Sample
static char*
GetWorkset(int conId)
{

static char workset_id[PCMS_L_PRODUCT_ID + PCMS_L_CD_ID + 5];
PcmsObjStruct *wsobj = (PcmsObjStruct *)0;
workset id[0] = '\0';
switch(PcmsGetWsetObj(conId, 0, &wsobj))
{

case PCMS ERROR:
case PCMS FAIL:

return((char *)0);
default:

break;
}
(void)sprintf(workset_id,"\"%s\":\ "%s\"",

wsobj->productId,wsobj->objId);
return(worksetid);

}

PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsSetWsetObj - Set User's Current Workset 69
PcmsSetWsetObj - Set User's Current Workset

Purpose

This function allows the user to reset the current workset in
which this Dimensions session is active.

Prototype
int
PcmsSetWsetObj (

int connectId,
int options,
PcmsObjStruct *ptrPcmsObjStruct,
char *dir);

Parameters

Return Codes

PcmsSetWsetObj() returns:

connectId is the database connection identifier.

options is not currently supported (use 0).

ptrPcmsObjStruct is a pointer to a structure of type
PcmsObjStruct that is populated by the
user to indicate what workset to change
to.

dir is the workset directory to use.

PCMS_OK on success

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

70 Chapter 3 DTK API Functions for C/C++
PcmsObjGetRels - Get Dimensions Object
Relationships

Purpose

This function can be used to navigate objects and their
relationships to other objects. For example, to return successor
revisions of an item.

Prototype
int
PcmsObjGetRels (

int connectId,
int fromObjUid,
int objType,
int options,
int contextUid,
int *noRels,
PcmsRelStruct **ptrPcmsRelStruct);

Parameters

connectId is the database connection identifier.

fromObjUid is the integer uid for a Dimensions object.

objType is the type of the Dimensions object. This type
must be one of PCMS_PART, PCMS_ITEM,
PCMS_CHDOC, or PCMS_BASELINE.

options is a collection of bits set that indicates the type
of objects to return in ptrPcmsRelStruct. If this
value is zero, then all object relationship types
are returned. You can restrict the list of objects
returned by specifying one or more of the
following types PCMS_PART, PCMS_ITEM,
PCMS_CHDOC, or PCMS_BASELINE.

continued
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsObjGetRels - Get Dimensions Object Relationships 71
Return Codes

PcmsObjGetRels() returns:

Comments

If fromObjUid is zero, then the top of the Dimensions database is
used as the starting point for the navigation.

If fromObjUid is zero and options is set to PCMS_PART, then only
the Dimensions products will be returned.

If PCMS_OPT_LATEST is set, then only the latest version of any
related objects is returned. This option is only valid when
objType is set to either PCMS_ITEM or PCMS_PART, and only
applies to ‘item to design part’ relationships.

contextUid can be used to limit the objects navigated to a
specific baseline_uid.

noRels is a pointer to an integer variable in which to
store the number of structures returned in
ptrPcmsRelStruct.

ptrPcmsRelStruct is a pointer to a contiguous block of allocated
memory that contains a number of structures
of type PcmsRelStruct. If no objects are found
then noRels is set to zero and ptrPcmsRelStruct
is set to (PcmsRelStruct *) zero.

It is the responsibility of the calling application
to free this pointer when it is no longer
required.

PCMS_OK on success

PCMS_FAIL when no objects were found

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

72 Chapter 3 DTK API Functions for C/C++
If PCMS_OPT_SUCC is set, then contextUid will be ignored and
the fromObjUid's successor revision will be returned. This option
is only valid when objType is set to either PCMS_PART or
PCMS_ITEM.

The option PCMS_OPT_MERGED can be used in conjunction with
PCMS_OPT_SUCC to return objects that have resulted as a merge
based on the object specified in fromObjUid. Currently this
option is only available for items.

The following table lists the combinations of object references,
object types and query options that are valid for this function.
Note that the PCMS_BASELINE option is always invalid when
obtaining the relationships recorded in a baseline.

Related Functions

PcmsGetBackRels().

Options

fromObjUid objType

PA
R

T

IT
EM

B
A

SE
LI

N
E

C
H

D
O

C

Zero Ignored V V V V

Non-zero PART V V I I

Non-zero ITEM I V I I

Non-zero BASELINE V V I I

Non-zero CHDOC V V I V

Key: V = Valid I = Invalid
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsObjGetBackRels - Get Dimensions Object Reverse Relationships 73
PcmsObjGetBackRels - Get Dimensions Object
Reverse Relationships

Purpose

This function can be used to navigate objects and their
relationships to other objects. For example, to return
predecessor revisions of an item. This function performs the
inverse navigation of PcmsObjGetRels().

Prototype
int
PcmsObjGetBackRels (

int connectId,
int fromObjUid,
int objType,
int options,
int contextUid,
int *noRels,
PcmsRelStruct **ptrPcmsRelStruct);

Parameters

connectId is the database connection identifier.

fromObjUid is the integer uid for a Dimensions object.

objType is the type of the Dimensions object. This
type must be one of PCMS_PART,
PCMS_ITEM, PCMS_CHDOC, or
PCMS_BASELINE.

continued
PVCS Dimensions Developer’s Toolkit Reference Guide

74 Chapter 3 DTK API Functions for C/C++
Return Codes

PcmsObjGetBackRels() returns:

Comments

If PCMS_OPT_PRED is set, then contextUid will be ignored and
the fromObjUid's predecessor revision will be returned. This

options is a collection of bits set that indicates the
type of objects to return in ptrPcmsRelStruct.
If this value is zero, then all object
relationship types are returned. You can
restrict the list of objects returned by
specifying one or more of the types
PCMS_PART, PCMS_ITEM, PCMS_CHDOC, or
PCMS_BASELINE.

contextUid can be used to limit the objects navigated to
a specific baseline_uid.

noRels is a pointer to an integer variable in which
to store the number of structures returned
in ptrPcmsRelStruct.

ptrPcmsRelStruct is a pointer to a contiguous block of allocated
memory that contains a number of structures
of type PcmsRelStruct. If no objects are found
then noRels is set to zero and ptrPcmsRelStruct
is set to (PcmsRelStruct *) zero.

It is the responsibility of the calling application
to free this pointer when it is no longer
required.

PCMS_OK on success

PCMS_FAIL when no objects where found

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsObjGetBackRels - Get Dimensions Object Reverse Relationships 75
option is only valid when objType is set to either PCMS_PART or
PCMS_ITEM.

The value of fromObjUid cannot be specified as zero.

The option PCMS_OPT_MERGED can be used in conjunction with
PCMS_OPT_PRED to return objects that have been used in a
merge to create the object specified in fromObjUid. Currently
this option is only available for items.

The following table lists combinations of object reference, object
type and query options that are valid for this function. Note that
the PCMS_BASELINE option is always invalid when obtaining the
reverse relationships recorded in a baseline.

Related Functions

PcmsObjGetRels().

Options

objType

PA
R

T

IT
EM

B
'L

IN
E

C
H

D
O

C

PART V I V V

ITEM V V V V

BASELINE I I I I

CHDOC I I I V

Key: V = Valid I = Invalid
PVCS Dimensions Developer’s Toolkit Reference Guide

76 Chapter 3 DTK API Functions for C/C++
PcmsQuery - Find Dimensions Objects,
returning Uids

Purpose

This function finds a list of Dimensions objects from the fields
specified in the PcmsObjStruct. If values are present in the fields
of the ptrPcmsObjStruct, they will be used to further refine the
query. The only field in ptrPcmsObjStruct that must be filled in is
objType. This means that the returned object uids will all be of
the same type.

Prototype
int
PcmsQuery (

int connectId,
PcmsObjStruct *ptrPcmsObjStruct,
int options,
int *noObjs,
int **ptrObjUids

);

Parameters

connectId is the database connection identifier.

PtrPcmsObjStruct is a pointer to a PcmsObjStruct that will be
used to further refine the query. The
objType field in the PcmsObjStruct must be
one of PCMS_ITEM, PCMS_PART,
PCMS_CHDOC, PCMS_USER,
PCMS_BASELINE, or PCMS_WORKSET

options is a collection of bits that is used to change
the default behavior of this function.

continued
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsQuery - Find Dimensions Objects, returning Uids 77
Return Codes

PcmsQuery() returns:

Sample
/*
*---
* FUNCTION SPECIFICATION
* Name:
* CountPcmsItems
* Description:
* Count items in Dimensions
* Parameters:
* char *itemId
* Return:
* no of items
* Notes:
*---
*/

continued

noObjs is a pointer to an integer variable in which
to store the number of integer uids
returned in ptrObjUids.

ptrObjUids is a pointer to a contiguous block of
allocated memory that lists the uids that the
query returned. If no objects are found as a
result of the function call, then noObjs is set
to zero and ptrObjUids is set to (int *) zero.

It is the responsibility of the calling
application to free this pointer when it is no
longer required.

PCMS_OK on success

PCMS_FAIL when no objects were found

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

78 Chapter 3 DTK API Functions for C/C++
static int
CountPcmsItems(int conId, char *itemId)
{

/*
* Query the database for items with the itemId passed in..
*/

int *uids = 0;
int noUids = 0;
int noAttrs = 2;
int i = 0;
int xx = PCMS_OK;
PcmsObjStruct obj = { 0 };
#define SET_ATTR(_attr,_value,p) \
{\

register int x = p;\
x--;\
obj.attrs[x].attr = _attr;\
PcmsSvaSetVal(obj.attrs[x].value,_value,0);\
p++;\

}

obj.objType = PCMS_ITEM;
obj.noAttrs = noAttrs;
obj.attrs = 0;
obj.attrs =

(PcmsObjAttrStruct *)
PcmsEvntCalloc(sizeof(PcmsObjAttrStruct)
*obj.noAttrs);

(void)strcpy(obj.objId,itemId);
i=1;

/* Search for items with TXT as format and of */
/* SPEC_UID 121 */
SET_ATTR(PCMS_ATTR_FORMAT,"TXT",i);
SET_ATTR(PCMS_ATTR_ITEM_SPEC_UID,"121",i);

/* Run the query */
if ((xx = PcmsQuery(conId,&obj,0,&noUids,&uids))==PCMS_OK)
{

/* Free memory */
if (uids && noUids > 0)

PcmsEvntFree((int *)uids);
}
else
{

(void)fprintf(stdout,"\nNo objects found - %s",
(xx == PCMS_ERROR) ? "Error" : "Fail");

if (xx == PCMS_ERROR)
(void)fprintf(stdout,PcmsErrorStr);

}
/* Free memory */
(void)PcmsObjFree(&obj);
return ((xx == PCMS_ERROR) ? xx : noUids);

}

PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsQuery - Find Dimensions Objects, returning Uids 79
Comments

By manipulating the *attrs pointer and associated noAttrs
members of the PcmsObjStruct structure it is possible to use
system and user attributes as additional components within the
query. If you wish to make use of this functionality, then you
only need to specify values in the attr and value members of the
PcmsObjAttrStruct structure. All other member fields are
ignored.

Both the members of the PcmsObjStruct structure and the value
field member of the PcmsObjAttrStruct structure support the use
of wildcard characters. There are two different kinds of wildcard
that you can use:

■ ‘ %’ (per cent) which allows pattern matching on many
characters

■ ‘ _ ‘ (underscore) which allows pattern matching against one
character.

If the objType field member of the PcmsObjStruct is set to
PCMS_CHDOC, you can use the options parameter
(PCMS_OPT_SECONDARY_CATALOGUE) to make the function
query against the secondary change document catalog instead
of the primary catalog. By default, the function will always query
the primary change document catalog.

If the objType field member of the PcmsObjStruct is set to
PCMS_ITEM, you can use the options parameter
(PCMS_OPT_LATEST) to return only the latest revisions of the
items that match the query.

If you use attribute filters or the options parameter to further
restrict the list of uids returned, the speed of the query will be
affected.

Only the following system attributes are supported in this
function.
PVCS Dimensions Developer’s Toolkit Reference Guide

80 Chapter 3 DTK API Functions for C/C++
If you use a multi-valued attribute as a filter, only the first
element of the attribute list will be used. The other elements will
be ignored.

Related Functions

PcmsFullQuery().

Object Attribute

PCMS_PART PCMS_ATTR_PARTNO
PCMS_ATTR_LOCALNO

PCMS_ITEM PCMS_ATTR_FORMAT
PCMS_ATTR_FILENAME
PCMS_ATTR_ITEM_SPEC_UID
PCMS_ATTR_LIB_FILENAME
PCMS_ATTR_COMPRESSED
PCMS_ATTR_SENDER_ID
PCMS_ATTR_CREATE_DATE
PCMS_ATTR_ORIGINATOR
PCMS_ATTR_PHASE
PCMS_ATTR_LIFECYCLE

PCMS_BASELINE PCMS_ATTR_TEMPLATE
PCMS_ATTR_BASELINE_TYPE

PCMS_CHDOC PCMS_ATTR_CREATE_DATE
PCMS_ATTR_ORIGINATOR
PCMS_ATTR_PHASE
PCMS_ATTR_SUPER_TYPE
PCMS_ATTR_UPDATE_DATE
PCMS_ATTR_LIFECYCLE

PCMS_USER PCMS_ATTR_GROUP
PCMS_ATTR_FULL_USERNAME
PCMS_ATTR_PHONE
PCMS_ATTR_DEPT
PCMS_ATTR_SITE

PCMS_WORKSET PCMS_ATTR_TRUNK (PCMS_ATTR_TRUNC)
PCMS_ATTR_ENFORCE_REV
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsObjInSecondary - Is Change Document Object in Secondary Catalog 81
PcmsObjInSecondary - Is Change Document
Object in Secondary Catalog

Purpose

This macro will return an integer indicating whether the object
specified by the parameter objPtr is a Change Document in the
secondary catalog.

Prototype
int
PcmsObjInSecondary (

PcmsObjStruct *objPtr
);

Parameters

Return Codes

PcmsObjInSecondary() returns:

objPtr is a pointer to a PcmsObjStruct.

PCMS_OK if this change document is in the secondary
catalog

PCMS_FAIL if this change document is in the primary catalog.
PVCS Dimensions Developer’s Toolkit Reference Guide

82 Chapter 3 DTK API Functions for C/C++
PcmsFullQuery - Find Dimensions Objects,
returning Complete Objects

Purpose

This function, like PcmsQuery(), will return a set of Dimensions
objects based on a user-specified filter. However, unlike
PcmsQuery(), this function returns fully populated PcmsObjStructs
with both object and attribute details loaded. This function is
faster than PcmsQuery() for returning large amounts of data.

Prototype
int
PcmsFullQuery (

int connectId,
PcmsObjStruct *ptrPcmsObjStruct,
int options,
int *noObjs,
PcmsObjStruct **ptrObjs

);

Parameters

connectId is the database connection identifier.

ptrPcmsObjStruct is a pointer to a PcmsObjStruct that contains
the fields to query for. The objType field in
the PcmsObjStruct must currently only be
PCMS_CHDOC.

options if this is set to
PCMS_OPT_SECONDARY_CATALOGUE, then
the function will process change documents in
the secondary catalog. By default this
function processes change documents in the
primary catalog.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsFullQuery - Find Dimensions Objects, returning Complete Objects 83
Return Codes

PcmsFullQuery() returns:

Sample
/*
*---
* FUNCTION SPECIFICATION
* Name:
* CountPcmsChdocs
* Description:
* Count chdocs
* Return:
* Return no of chdocs
*---
*/

static int
CountPcmsChdocs(int conId, char *chdoc)
{

/*
* Query the database for chdocs with the chdoc passed in...
*/

int *uids = 0;

continued

noObjs is a pointer to an PcmsObjStruct variable in
which to store the objects returned in ptrObjs.

ptrObjs is a pointer to a contiguous block of allocated
memory that contains the structures that the
query returned. If no objects are found
noObjs is set to zero and ptrObjs is set to
(PcmsObjStruct *) zero.

It is the responsibility of the calling
application to free this memory when it is no
longer required.

PCMS_OK on success

PCMS_FAIL when no objects were found

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

84 Chapter 3 DTK API Functions for C/C++
int noUids = 0;
int noAttrs = 5;
int i = 0;
int xx = PCMS_OK;
PcmsObjStruct obj = { 0 };
PcmsObjStruct *ptrObjs = 0;
#define SET_ATTR(_attr,_value,p) \
{\

register int x = p;\
x--;\
obj.attrs[x].attr = _attr;\
PcmsSvaSetVal(obj.attrs[x].value,_value,0);\
p++;\

}
obj.objType = PCMS_CHDOC;
obj.noAttrs = noAttrs;
obj.attrs = 0;
obj.attrs =

(PcmsObjAttrStruct *)
PcmsEvntCalloc(sizeof(PcmsObjAttrStruct)

* obj.noAttrs);
(void)strcpy(obj.objId,chdoc);
i=1;
/* Search for chdocs with fixed attributes */
SET_ATTR(PCMS_ATTR_CREATE_DATE,"%%",i);
SET_ATTR(PCMS_ATTR_ORIGINATOR,"%%",i);
SET_ATTR(PCMS_ATTR_PHASE,"%%",i);
SET_ATTR(PCMS_ATTR_SUPER_TYPE,"%%",i);
SET_ATTR(PCMS_ATTR_UPDATE_DATE,"%%",i);
if ((xx = PcmsFullQuery(conId,&obj,0,

&noUids,
&ptrObjs))==PCMS_OK)

{
/* Free memory */
if (ptrObjs && noUids > 0)
{

int xc = 0;
for(xc=0;xc<noUids;xc++)

PcmsObjFree(&ptrObjs[xc]);
}

}
else
{

(void)fprintf(stdout,"\nNo objects found - %s",
(xx == PCMS_ERROR) ? "Error" : "Fail");

if (xx == PCMS_ERROR)
(void)fprintf(stdout,PcmsErrorStr);

}
/* Free memory */
(void)PcmsObjFree(&obj);
return ((xx == PCMS_ERROR) ? xx : noUids);

}

PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsFullQuery - Find Dimensions Objects, returning Complete Objects 85
Comments
By manipulating the *attrs pointer and associated noAttrs
members of the PcmsObjStruct structure it is possible to use
system and user attributes as additional components within the
query. If you wish to make use of this functionality, then you
only need to specify values in the attr and value members of the
PcmsObjAttrStruct structure. All other member fields are
ignored.

Both the members of the PcmsObjStruct structure and the value
field member of the PcmsObjAttrStruct support the use of
wildcard characters. There are two different kinds of wildcard
that you can use:

■ ‘ % ’ (per cent) which allows pattern matching on many
characters

■ ‘ _ ‘ (underscore) which allows pattern matching against one
character.

This function currently supports only objects of PCMS_CHDOC. It
is liable for change in the future.

You can only use the following as system attribute filters:

■ PCMS_ATTR_CREATE_DATE

■ PCMS_ATTR_ATTR_ORIGINATOR

■ PCMS_ATTR_PHASE

■ PCMS_ATTR_SUPER_TYPE

■ PCMS_ATTR_UPDATE_DATE

■ PCMS_ATTR_LIFECYCLE.

If you use a multi-valued attribute as a filter, then only the first element
of the attribute list will be used, the other elements will be ignored.

Related Functions

PcmsQuery().
PVCS Dimensions Developer’s Toolkit Reference Guide

86 Chapter 3 DTK API Functions for C/C++
PcmsPendGet - Retrieve Dimensions Objects
Pending for a User

Purpose

This function retrieves the pending list of items and/or change
documents for the current or a specified user.

CAUTION! The parameter userName will turn into an object uid
for a Dimensions user object in the future.

Prototype
int
PcmsPendGet (

int connectId,
char *userName,
char *reserved,
int options,
int *noStructs,
PcmsPendStruct **ptrPcmsPendStructs

);

Parameters

connectId is the database connection identifier.

userName is the user to query the objects pending
for. If this parameter is NULL then the
current user's pending list is queried.

reserved is reserved for future use.
continued
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsPendGet - Retrieve Dimensions Objects Pending for a User 87
Return Codes

PcmsPendGet() returns:

options this determines which objects are to be
returned by this function. You can specify
one of the following:

■ Zero (0) which returns all pending
object types

■ PCMS_CHDOC which returns all
pending change documents

■ PCMS_ITEM which returns all pending
items.

noStructs is a pointer to an integer variable in
which to store the number of structures
of type PcmsPendStruct returned in
ptrPcmsPendStruct.

ptrPcmsPendStructs is a pointer to a contiguous block of
allocated memory that lists the objects
that the function returned. If no objects
are found, then this value is set to 0 and
ptrPcmsPendStructs is set to
(PcmsPendStruct*) zero.

It is the responsibility of the calling
application to free this pointer when it is
no longer required.

PCMS_OK on success

PCMS_FAIL when no objects are found

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

88 Chapter 3 DTK API Functions for C/C++
Comments

Only if you have the role of CHANGE-MANAGER can you use the
userName parameter to query another user’s change document
pending list.

Only if you have the role of PRODUCT-MANAGER can you use the
userName parameter to query another user’s item pending list.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsPendWhoGet - Retrieve Users for Object 89
PcmsPendWhoGet - Retrieve Users for Object

Purpose

This function retrieves the users who will have a specified object
pending for them at a user-defined status.

Prototype
int
PcmsPendWhoGet (

int connectId,
int objUid,
int objType,
int options,
char *status,
int *noStructs,
PcmsPendStruct **ptrPcmsPendStructs

);

Parameters

connectId is the database connection identifier.

objUid is the uid for a Dimensions object against
which this function will be run.

NOTE objUid cannot be zero (0).

objType is the type of the Dimensions object. This
type must be one of PCMS_PART,
PCMS_ITEM, or PCMS_CHDOC.

status is the status in the lifecycle for which you
wish to return the list of pending users.

options is reserved for future use.
continued
PVCS Dimensions Developer’s Toolkit Reference Guide

90 Chapter 3 DTK API Functions for C/C++
Return Codes

PcmsPendWhoGet() returns:

Related Functions

PcmsPendGet().

noStructs is a pointer to an integer variable in which
to store the number of structures of type
PcmsPendStruct returned in
ptrPcmsPendStructs.

ptrPcmsPendStructs is a pointer to a contiguous block of
allocated memory that lists the users that
the function has found. If no objects are
found noStructs is set to zero and
ptrPcmsPendStructs is set to
(PcmsPendStructs *) zero. It is the
responsibility of the calling application to
free this pointer when it is no longer
required.

PCMS_OK on success

PCMS_FAIL when no objects were found

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsCntrlPlanGet - Get Dimensions Process Model Information 91
PcmsCntrlPlanGet - Get Dimensions Process
Model Information

Purpose

This function queries the Dimensions process model (control
plan) and returns the data in various different structures.

Prototype
int
PcmsCntrlPlanGet (

int connectId,
int reserved,
int options,
char *fromId,
int objUid,
char *startContext,
int *noStructs,
void **ptrStructs

);

Parameters

When options = PCMS_CHD_TYPE:

objUid is 0 for all change document types or contains a
typeUid from a PcmsObjStruct structure.

fromId is the Dimensions product from which to retrieve
the change document types when objUid is 0.
This parameter is ignored when objUid is not 0.

startContext is NULL or a valid Dimensions super_type cast to
a char *. This parameter is ignored when objUid
is not 0.

ptrStructs is a pointer to a contiguous block of allocated
memory that lists the structures of type
PcmsTypeStruct.
PVCS Dimensions Developer’s Toolkit Reference Guide

92 Chapter 3 DTK API Functions for C/C++
When options = PCMS_PART_TYPE or PCMS_PART_CATEGORY:

When options = PCMS_BASELINE_TYPE:

When options = PCMS_LC:

objUid is 0 for all part types or contains a typeUid from
a PcmsObjStruct structure.

fromId is the Dimensions product from which to
retrieve the design part types when objUid is 0.
This parameter is ignored when objUid is not 0.

startContext is ignored.

ptrStructs is a pointer to a contiguous block of allocated
memory that lists the structures of type
PcmsTypeStruct.

objUid is 0 for all baseline types or contains a typeUid
from PcmsObjStruct structure.

fromId is the Dimensions product from which to
retrieve the baseline types when objUid is 0.
This parameter is ignored when objUid is not 0.

startContext is ignored.

ptrStructs is a pointer to a contiguous block of allocated
memory that lists the structures of type
PcmsTypeStruct.

fromId is the lifecycle-id.

objUid is ignored.

startContext is NULL (in which case the first lifecycle state is
returned) or is a valid state within the lifecycle (in
which case the next possible states will be
returned).

ptrStructs is a pointer to a contiguous block of allocated
memory that lists the structures of type
PcmsLcStruct.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsCntrlPlanGet - Get Dimensions Process Model Information 93
When options = PCMS_ATTRIBUTE ORed with PCMS_OBJ_TYPE
ORed with PCMS_ITEM or PCMS_PART or PCMS_CHDOC or
PCMS_USER or PCMS_BASELINE:

The following parameters apply whatever the definition of
options.

It is the responsibility of the calling application to free the
ptrStructs pointer when it is no longer required.

fromId is the Dimensions product from which to retrieve
the attribute definitions when objUid is 0. This
parameter is ignored when objUid is not 0.

objUid is 0 or the uid of the type for which to retrieve
the attribute definitions.

startContext is NULL or a valid name of a Dimensions type (the
typeName field of the PcmsTypeStruct). If a
startContext is specified, then only attribute
definitions that have been specified in the
documentation plan will be returned. This
parameter is ignored when objUid is not 0.

ptrStructs is a pointer to a contiguous block of allocated
memory that lists the structures of type
PcmsObjAttrDefStruct.

connectId is the database connection identifier.

reserved is reserved for future use.

noStructs is a pointer to an integer variable in which to
store the number of structures returned in
ptrStructs. If no objects are found noStructs is set
to zero and ptrStructs is set to (void *) zero.
PVCS Dimensions Developer’s Toolkit Reference Guide

94 Chapter 3 DTK API Functions for C/C++
Return Codes

PcmsCntrlPlanGet() returns:

PCMS_OK on success

PCMS_FAIL when no objects were found

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsInitSpec - Get Dimensions Object Details by Specification 95
PcmsInitSpec - Get Dimensions Object Details
by Specification

Purpose

This function populates a PcmsObjStruct with the details on a
specific object.

Prototype
int
PcmsInitSpec (

int connectId,
char *objSpec,
int objType,
PcmsObjStruct *ptrPcmsObjStruct

);

Parameters

connectId is the database connection identifier.

objSpec is the textual specification of an object e.g.
“FS:HITOMI_C.A-SRC;main#1”.

objType is the type of the object that the
specification refers to. You can use
PCMS_PART, PCMS_ITEM, PCMS_BASELINE,
PCMS_USER, PCMS_CHDOC or
PCMS_WORKSET.

ptrPcmsObjStruct is a pointer to a structure of type
PcmsObjStruct in which to store the details
on the object specified by objSpec.
PVCS Dimensions Developer’s Toolkit Reference Guide

96 Chapter 3 DTK API Functions for C/C++
Return Codes

PcmsInitSpec() returns:

Comments

This function does not populate the attribute details within the
PcmsObjStruct structure. This has to be done separately by calling
PcmsGetAttrs().

Related Functions

PcmsInitUid(), PcmsGetAttrs().

PCMS_OK on success

PCMS_FAIL on not finding the object

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsInitUid - Get Dimensions Object Details by Uid 97
PcmsInitUid - Get Dimensions Object Details
by Uid

Purpose

This function populates a PcmsObjStruct with the details on a
specific object.

Prototype
int
PcmsInitUid (

int connectId,
int objUid,
int objType,
PcmsObjStruct *ptrPcmsObjStruct

);

Parameters

connectId is the database connection identifier.

objUid is the integer uid of the object.

objType is the type of the object that the specification
refers to. You can use PCMS_PART,
PCMS_ITEM, PCMS_BASELINE, PCMS_USER,
PCMS_CHDOC or PCMS_WORKSET.

ptrPcmsObjStruct is a pointer to a structure of type
PcmsObjStruct in which to store the details
on the object specified by the uid.
PVCS Dimensions Developer’s Toolkit Reference Guide

98 Chapter 3 DTK API Functions for C/C++
Return Codes

PcmsInitUid() returns:

Comments

This function does not populate the attribute details within the
PcmsObjStruct structure. This has to be done separately by calling
PcmsGetAttrs().

Related Functions

PcmsInitSpec(), PcmsGetAttrs().

PCMS_OK on success

PCMS_FAIL on not finding the object

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsSetAttrs - Set Dimensions Object Attributes 99
PcmsSetAttrs - Set Dimensions Object
Attributes

Purpose

This function uses the attribute details defined in a
PcmsObjStruct and sets these attributes on the appropriate
Dimensions object.

By using this function you can populate a PcmsObjStruct with
the details on an object, such as an item, manipulate the noAttrs
and *attrs member fields and then apply these attributes to the
Dimensions object.

Prototype
int
PcmsSetAttrs (

int connectId,
PcmsObjStruct *ptrPcmsObjStruct

);

Parameters

connectId is the database connection identifier.

ptrPcmsObjStruct is a pointer to a structure of type
PcmsObjStruct that has been initialized via
PcmsInitUid() or PcmsInitSpec() and into
which the new attributes have been
defined. Each element of the array pointed
to by the *attrs field must have the attr and
value member fields set.
PVCS Dimensions Developer’s Toolkit Reference Guide

100 Chapter 3 DTK API Functions for C/C++
Return Codes

PcmsSetAttrs() returns:

Comments

PcmsSetAttrs() can set user-defined attributes on parts, items,
change documents but non-visible attributes (those which are
not displayed in client interfaces) can be set only on change
documents.

The *attrs pointer in the PcmsObjStruct must only be populated
with attributes that you wish to add or modify.

This function can be used only to setup user-defined attributes on
objects of type PCMS_ITEM, PCMS_CHDOC and PCMS_PART.

This function enforces the same checks used when setting
attribute values as performed by any other interface.

This function is intended for applications using the Client
Architecture Model. It is not supported when called from within
DTK events. If you wish to change attributes from within an
event, then please use the Validate event as described in
Chapter 5.

Related Functions

PcmsInitUid(), PcmsInitSpec(), PcmsGetAttrs().

PCMS_OK on success

PCMS_FAIL on not setting the attributes successfully.
PcmsErrorStr will contain the message returned
from Dimensions

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsGetAttrs - Get Dimensions Object Attributes 101
PcmsGetAttrs - Get Dimensions Object
Attributes

Purpose

This function populates a specific PcmsObjStruct with the
attribute details for that object. Calling this function will result
in the noAttrs and *attrs member elements being populated
with the full attribute details and attribute definitions. If you
wish to access the information on the attribute definitions, use
the PcmsObjAttrDefStruct pointer (attrDef) from the
PcmsObjAttrStruct (attrs) pointer.

Prototype
int
PcmsGetAttrs (

int connectId,
PcmsObjStruct *ptrPcmsObjStruct

);

Parameters

connectId is the database connection identifier.

ptrPcmsObjStruct is a pointer to a structure of type
PcmsObjStruct into which the attribute
information will be populated.
PVCS Dimensions Developer’s Toolkit Reference Guide

102 Chapter 3 DTK API Functions for C/C++
Return Codes

PcmsGetAttrs() returns:

Comments

Before calling this function ensure that you have populated a
valid PcmsObjStruct via the PcmsInitUid() or PcmsInitSpec()
functions.

When you have populated an object structure using this function,
remember to free the memory associated with it via
PcmsObjFree() when that object is no longer required.

Related Functions

PcmsInitUid(), PcmsInitSpec(), PcmsObjFree()

PCMS_OK on success

PCMS_FAIL on not finding the object

PCMS_ERROR on failure and sets PcmsErrorStr, PcmsDbErrorNo,
and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsObjFree - Free Dimensions Object Structures 103
PcmsObjFree - Free Dimensions Object
Structures

Purpose

This function frees any memory that may have been allocated
internally to the PcmsObjStruct structure. This includes any
attributes or attribute definition structures.

Prototype
int
PcmsObjFree (

PcmsObjStruct *ptrPcmsObjStruct
);

Parameters

Return Codes

PcmsObjFree() returns:

ptrPcmsObjStruct is a pointer to a structure of type
PcmsObjStruct from which to free the
memory.

PCMS_OK this value is always returned.
PVCS Dimensions Developer’s Toolkit Reference Guide

104 Chapter 3 DTK API Functions for C/C++
PcmsGetAttrDefNum - Get Attribute
Definition Number

Purpose

This function returns the attribute number for a specified
attribute definition.

Prototype
int
PcmsGetAttrDefNum (

int connectId,
char *productId,
int objType,
char *attrName,
int *attrNum

);

Parameters

connectId is the database connection identifier.

productId is the product name

objtype is the type of the object. You can use
PCMS_PART, PCMS_ITEM, PCMS_BASELINE,
PCMS_USER or PCMS_CHDOC.

attrName is the name of the attribute (the variable field
in the PcmsObjAttrDefStruct).

attrNum is the returned attribute number.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsGetAttrDefNum - Get Attribute Definition Number 105
Return Codes

PcmsGetAttrDefNum() returns:

PCMS_OK on success

PCMS_FAIL on failure to find the specified attribute name
for the given product and object type

PCMS_ERROR on failure and sets PcmsErrorNo and
PcmsErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

106 Chapter 3 DTK API Functions for C/C++
PcmsAttrDefInit - Get Attribute Definition

Purpose

This function retrieves an attribute definition for a specified
typeUid, object type and attribute number.

Prototype
int
PcmsAttrDefInit (

int connectId,
int typeUid,
int objType,
int attrNum,
PcmsObjAttrDefStruct **ptrDefStruct

);

Parameters

connectId is the database connection identifier.

typeUid is the type (the typeUid field of the
PcmsObjStruct) to which the attribute applies.

objType is the type of the object. You can use
PCMS_PART, PCMS_ITEM, PCMS_BASELINE,
PCMS_USER or PCMS_CHDOC.

attrNum is the attribute number for which the definition
is to be retrieved.

ptrDefStruct is the address of a pointer to a
PcmsObjAttrDefStruct in which the attribute
definition will be stored.

It is the responsibility of the calling application
to free this pointer when it is no longer required.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsAttrDefInit - Get Attribute Definition 107
Return Codes

PcmsAttrDefInit() returns:

Related Functions

PcmsCntrlPlanGet().

PCMS_OK on success

PCMS_FAIL on failure to find the specified attribute
number for the given type and object type

PCMS_ERROR on failure and sets PcmsErrorNo and
PcmsErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

108 Chapter 3 DTK API Functions for C/C++
PcmsAttrGetLov - Get Attribute's List of Values

Purpose

This function retrieves the list of valid set values that are allowed
for a specified object and attribute. The list of values is returned
as an array of char *(s).

The PcmsObjStruct that is used in this function must have at least
the following member fields defined.

■ The typeUid set to the Dimensions type against which the
attribute has been assigned.

■ The noAttrs field set to at least 1.

■ The *attrs pointer set to a PcmsObjAttrStruct structure which
must have the member fields set as follows:

• attr attribute number you are querying

• value a ” ” string via PcmsSvaSetVal()

• attrDef the corresponding PcmsObjAttrDefStruct.

It is possible to obtain the typeUids for a product and objType via
PcmsCntrlPlanGet(). A certain attribute definition can then be
obtained by calling PcmsAttrDefInit().

Prototype
int
PcmsAttrGetLov

(
int connectId,
PcmsObjStruct *objPtr,
int attrNum,
char **message,
int *noStrings,
char ***ptrArrayOfStrings

);
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsAttrGetLov - Get Attribute's List of Values 109
Parameters

Return Codes

PcmsAttrGetLov() returns:

connectId is the database connection identifier.

objPtr is the object containing the type and
attribute details.

attrNum is the attribute number.

message is the error message returned if the status
is not PCMS_OK. It is the caller’s
responsibility to free this allocated
memory if not NULL.

noStrings is the address of an integer variable to
contain the number of strings in the array.

ptrArrayOfStrings is the address of a pointer to the array of
returned strings. This array must be freed
via PcmsLovFree().

PCMS_OK on success

PCMS_FAIL on failure to find the specified attribute
number for the given type and object type

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

110 Chapter 3 DTK API Functions for C/C++
Sample
/*
*--
* FUNCTION SPECIFICATION
* Name:
* GetLovs
* Description:
* Get LOVs for a specified attribute and typeUid
* Parameters:
* int conId
* int objType
* int typeUid
* int attr
* Return:
* int
* Notes:
*--
*/

int GetLovs(int conId, int objType, int typeUid, int attr)
{

PcmsobjStruct obj = { 0 };
PcmsObjAttrDefStruct *attrDef = 0;
char **vals = 0;
int noVals = 0;
int x = 0;
char *ptrError = 0;
int status = 0;

obj.typeUid = typeUid;
obj.noAttrs = 1;
/* Get the details on the specified */
/* attribute */
if ((status = PcmsAttrDefInit(conId,typeUid,

objType,attr,&attrDef))!=PCMS_OK)
return status;

/* Put together a dummy object structure */
obj.attrs =

(PcmsObjAttrStruct*)PcmsEvntMalloc(sizeof
(PcmsObjAttrStruct)*1);

obj.attrs[0].attr = attr;
PcmsSvaSetVal(obj.attrs[0].value,NULL,0);
obj.attrs[0].attrDef = attrDef;

/* Get the LOV values */
if ((status = PcmsAttrGetLov(conId,&obj,

attr,&ptrError,
&noVals,&vals))==PCMS_OK)

{
int i = 0;

/**

continued
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsAttrGetLov - Get Attribute's List of Values 111
** Scan list of LOVs and report

**/
for(i=O;i<noVals;i++)

(void)fprintf(stdout,
”\nLov[%d/%d] - %s”,
i,noVals,vals[i]);

PcmsLovFree(noVals,vals);
}
(void)PcmsObjFree(&obj);
return(status);

}

Related Functions

PcmsAttrDefInit(), PcmsAttrValidate().
PVCS Dimensions Developer’s Toolkit Reference Guide

112 Chapter 3 DTK API Functions for C/C++
PcmsAttrValidate - Validate an Attribute Value

Purpose

This function verifies that any attribute values specified on a
given object structure do not conflict with any valid sets that may
have been defined.

Prototype
int
PcmsAttrValidate (

int connectId,
PcmsObjStruct *objPtr,
int attrNum,
char **message

);

Parameters

connectId is the database connection identifier.

objPtr is the object containing the attribute values to be
validated.

attrNum is the attribute number against which the object
attributes will be validated.

message is the error message returned if the status is not
PCMS_OK. It is the caller’s responsibility to free this
allocated memory if not NULL.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsAttrValidate - Validate an Attribute Value 113
Return Codes

PcmsAttrValidate() returns:

Related Functions

PcmsAttrGetLov(), PcmsLovFree().

PCMS_OK on success

PCMS_FAIL on failure

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

114 Chapter 3 DTK API Functions for C/C++
PcmsLovFree - Free a List of Values

Purpose

This function frees an array of strings returned by
PcmsAttrGetLov().

Prototype
int
PcmsLovFree (

int noValues,
char **values

);

Parameters

Return Codes

PcmsLovFree() returns:

Related Functions

PcmsAttrGetLov().

noValues is the number of strings in the array.

values is the array name.

PCMS_OK on success.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsGetUserRoles - Obtain User Role Structures 115
PcmsGetUserRoles - Obtain User Role
Structures

Purpose

This function returns those users who are found to have certain
roles for this object. The returned structures indicate whether or
not the user was delegated the role (via DLGC), or if the role was
inherited from the design tree. These structures will also indicate
if the user’s capability is primary or secondary.

Currently this function will support only objects of type
PCMS_CHDOC. The actionable field of the returned
PcmsUserRoleStruct is not populated.

Prototype
int
PcmsGetUserRoles (

int connectId,
int reserved,
int options,
PcmsObjStruct *objPtr,
int partUid,
int noRoles,
char *roles[],
char *userName,
int *noUserRoles,
PcmsUserRoleStruct **ptrUserRoles

);
PVCS Dimensions Developer’s Toolkit Reference Guide

116 Chapter 3 DTK API Functions for C/C++
Parameters

Return Codes

PcmsGetUserRoles() returns:

connectId is the database connection identifier.

reserved is reserved for future use.

options is reserved for future use.

objPtr is a pointer to a change document PcmsObjStruct
that has been initialized via PcmsInitSpec() or
PcmsInitUid().

partUid is the partUid for which to obtain roles.

noRoles is the optional number of roles on which you wish
to filter.

roles is an optional array of char * roles that are used to
filter the data returned.

userName is an optional username.

noUserRoles is the address of an integer variable to contain the
number of PcmsUserRole structures returned.

ptrUserRoles is a pointer to a contiguous block of allocated
memory that lists the structures of type
PcmsUserRole. If no objects are found noUserRoles
is set to zero and ptrUserRoles is set to
(PcmsUserRoleStruct *) zero.

It is the responsibility of the calling application to
free this pointer when it is no longer required.

PCMS_OK on success

PCMS_FAIL on failure to find any data

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsGetUserRoles - Obtain User Role Structures 117
Comments

If partUid is zero, then the appropriate parent part of the
change document is calculated and used by the function for the
tree walk.

You can use the userName parameter to act as a filter for the
user against which this function will apply. If you specify a NULL
value, then all users are retrieved.

If you know which particular roles that interest you, you can use
the noRoles and roles parameters to filter for these roles. If
noRoles is zero (0), all the roles will be retrieved.

Related Functions

PcmsGetPendingUsers().
PVCS Dimensions Developer’s Toolkit Reference Guide

118 Chapter 3 DTK API Functions for C/C++
PcmsGetPendingUsers - Obtain Pending User
Structures

Purpose

This function allows $CHANGE-MANAGER(S) to retrieve the list of
pending users (with their roles and capabilities) for a specified
change document object.

Each of the structures that are returned detail the next status and
phase possible for a user on that change document.

This function supports only objects of PCMS_CHDOC type.

Prototype
int

PcmsGetPendingUsers (
int connectId,
int options,
int reserved,
PcmsObjStruct *objPtr,
int *noPendingUsers,
PcmsPendingUserStruct **ptrPendingUsers

);

Parameters

connectId is the database connection identifier.

options is reserved for future use.

reserved is reserved for future use.

objPtr is a pointer to a change document -
PcmsObjStruct that has been initialized via
PcmsInitSpec() or PcmsInitUid().

continued
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsGetPendingUsers - Obtain Pending User Structures 119
Return Codes

PcmsGetPendingUsers() returns:

Related Functions

PcmsInitSpec(), PcmsInitUid(), PcmsGetUserRoles().

noPendingUsers is the address of an integer variable to contain
the number of PcmsPendingUser structures
returned.

ptrPendingUsers is a pointer to a contiguous block of allocated
memory that lists the structures of type
PcmsPendingUser. If no objects are found
noPendingUsers is set to zero and
ptrPendingUsers is set to (PcmsPendingUser *)
zero.

It is the responsibility of the caller application
to free this pointer when it is no longer
required.

PCMS_OK on success

PCMS_FAIL on failure to find any data

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

120 Chapter 3 DTK API Functions for C/C++
PcmsGetRSNames - Obtain Role Section
Names for a Product

Purpose

This function retrieves the list of role section names
corresponding to a given object uid. This uid can be for a change
document, an item, a part or a type name. If you specify an object
uid, then only those role sections applicable to that object are
returned. If you specify a type uid, then all role sections
associated with that type’s lifecycle are returned.

Prototype
int
PcmsGetRSNames (

int connectId,
int reserved,
int options,
int uid,
char **message,
int *noValues,
char **values

);

Parameters

connectId is the database connection identifier.

reserved is reserved for future use.

options is reserved for future use.

uid is the object uid or type uid that will be used.

message is the error message returned if the status is not
PCMS_OK. It is the caller’s responsibility to free
this allocated memory if not NULL.

continued
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsGetRSNames - Obtain Role Section Names for a Product 121
Return Codes

PcmsGetRSNames() returns:

Related Functions

PcmsGetRSAttrs().

noValues is the address of an integer corresponding to the
number of role section names returned.

values is a char * array of role section names returned.

It is the responsibility of the calling application to
free this pointer when it is no longer required.

PCMS_OK on success

PCMS_FAIL on failure to find any data

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

122 Chapter 3 DTK API Functions for C/C++
PcmsGetRSAttrs - Retrieve Attribute Numbers
in a Role Section

Purpose

This function returns the attribute numbers that are used by a
given role section object/type uid combination. The order in
which these attribute numbers are returned is in the display
order described in the process model. If you specify an object uid,
then only those roles section attributes applicable to that object
are returned. If you specify a type uid, then all the role section
attributes associated with that type’s lifecycle are returned.

Object and type uids are mutually exclusive. If you specify object
uid (objUid), this will cause the function to ignore any type uids
that you may additionally specify.

This function currently supports items, change documents and
parts.

Prototype
int
PcmsGetRSAttrs (

int connectId,
int reserved,
int options,
int objUid,
int typeUid,
char *roleName,
char *userName,
int *noAttrs,
int **attrs,
char **defaultRole

);
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsGetRSAttrs - Retrieve Attribute Numbers in a Role Section 123
Parameters

Return Codes

PcmsGetRSAttrs() returns:

connectId is the database connection identifier.

reserved is reserved for future use.

options is reserved for future use.

objUid is the uid of the object that the function will use.

typeUid is the uid of the type name that the function will
use.

roleName is the role name to request the attribute
numbers for. If a NULL string is used, the default
role section name will be calculated and
returned via the parameter defaultRole.

userName is reserved for future use.

noAttrs is the total number of attribute numbers
returned.

attrs is a pointer to the list of attribute numbers
contained in this role section.

It is the responsibility of the calling application
to free this pointer when it is no longer
required.

defaultRole is the address of a char * that is used to store the
default role section name when the roleName
parameter is a NULL string. It is the caller’s
responsibility to free the memory if this string is
not NULL.

PCMS_OK on success

PCMS_FAIL on failure to find any data

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

124 Chapter 3 DTK API Functions for C/C++
Comments

You can use the roleName parameter to filter on those attributes
which apply to a certain role section name. In addition, two
special filters can also be used.

If you specify the roleName parameter as a NULL string, the
function will calculate the default role section name and
populate this into the defaultRole parameter.

Related Functions

PcmsGetRSNames()

1 $ALL returns all the attributes that are
associated with that object or type
uid’s lifecycle.

2 $ALL_ROLE_SECTIONS returns all the attributes used by
any role sections for this object or
type uid’s lifecycle.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsGetUserRelTypes - Obtain User Relationship Subtypes 125
PcmsGetUserRelTypes - Obtain User
Relationship Subtypes

Purpose

This function returns all the user-relationship sub-types for a
specified product. These relationship types include affected,
information, dependent and user-defined item-to-item
relationships.

Prototype
int
PcmsGetUserRelTypes (

int connectId,
int reserved,
int options,
char *productId,
int *noRelTypes,
PcmsRelTypeStruct **relTypes

);

Parameters

connectId is the database connection identifier.

reserved is reserved for future use.

options is reserved for future use.

productId is the product Id that the function will use.
continued
PVCS Dimensions Developer’s Toolkit Reference Guide

126 Chapter 3 DTK API Functions for C/C++
Return Codes

PcmsGetUserRelTypes() returns:

Comments

For completeness, definitions of the standard Dimensions-
defined relationships are also given.

noRelTypes is pointer to an integer variable in which to store
in relTypes.

relTypes is a pointer to a contiguous block of allocated
memory that lists the an array of
PcmsRelTypeStructs returned. If no objects are
found as a result of the function call, then
noRelTypes is set to zero and relTypes is set to
(PcmsRelTypeStruct *) zero.

It is the responsibility of the calling application to
free this pointer when it is no longer required.

PCMS_OK on success

PCMS_FAIL on failure to find any data

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsPopulate - Populate an Object's Attributes Values 127
PcmsPopulate - Populate an Object's
Attributes Values

Purpose

This function populates a given PcmsObjStruct with attributes,
attribute definitions and values. The values are copied from an
existing object which you supply, and are merged with the
attributes generic to a specified type uid.

Prototype
int
PcmsPopulate (

int connectId,
int options,
int objType,
int typeUid,
PcmsObjStruct *primeObj,
PcmsObjStruct **outObject

);

Parameters

connectId is the database connection identifier.

options is reserved for future use.

objType is the type of the outObject e.g. PCMS_ITEM

typeUid is the typeUid for the outObject.

primeObj is a pointer to another object to prime the values
of the outObject from.

outObject is the address of a pointer to a PcmsObjStruct that
will be allocated and populated by this function.
PVCS Dimensions Developer’s Toolkit Reference Guide

128 Chapter 3 DTK API Functions for C/C++
Return Codes

PcmsPopulate() returns:

PCMS_OK on success

PCMS_FAIL on failure to find any data

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsGetCandidates - Retrieve Candidates for Delegation 129
PcmsGetCandidates - Retrieve Candidates for
Delegation

Purpose

This function returns a list of those users who are valid
candidates for the object, role and capability supplied. Currently
this function supports only objects of the type PCMS_CHDOC.

Prototype
int
PcmsGetCandidates (

int connectId,
int options,
PcmsObjStruct *objPtr,
char *role,
char capability,
char *noCandidates,
char ***candidates

);

Parameters

connectId is the database connection identifier.

options is reserved for future use.

objPtr is pointer to a PcmsObjStruct that contains an
object that has been initialized with
PcmsInitSpec() or PcmsInitUid().

role is the role for which to retrieve candidates e.g.
“DEVELOPER”.

capability is the capability that the candidate has – 'L'
(Leader),'P' (Primary) or 'S' (Secondary).

continued
PVCS Dimensions Developer’s Toolkit Reference Guide

130 Chapter 3 DTK API Functions for C/C++
Return Codes

PcmsGetCandidates() returns:

noCandidates is a pointer to an integer in which to store the
number of returned values.

candidates is the address of a pointer in which the
returned list of users will be returned. The
function will allocate the associated memory.

It is the responsibility of the calling application
to free this pointer when it is no longer
required.

PCMS_OK on success

PCMS_FAIL on failure to find any data

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo, and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsGetAttrFile - Get Change Document Descriptions 131
PcmsGetAttrFile - Get Change Document
Descriptions

Purpose

This function enables you to obtain either the detailed
description, the current action description or full action for a
specified change document.

Prototype
int
PcmsGetAttrFile (

int connectId,
PcmsObjStruct *objPtr,
int options,
int attrNo,
char **toFile,
int *size

);

Parameters

connectId is the database connection identifier.

objPtr is the pointer to the change document that the
function will use.

options Options 0 to 2 are used as follows:

0 Copies the selected description into a file
specified by the variable toFile

1 Copies the selected description into the
variable toFile and populates the size of the
description file into the variable size.

continued
PVCS Dimensions Developer’s Toolkit Reference Guide

132 Chapter 3 DTK API Functions for C/C++
NOTE that if toFile is a NULL pointer, then this
function will allocate memory to hold the
description. It is then the caller’s responsibility
to free this memory.

2 Places only the size of the description into the
variable size.

attrNo specifies the type of description requested, the
following values are valid.

PCMS_ATTR_ACTION_DESC Returns the full
action
description of
the change
document

PCMS_ATTR_THIS_ACTION_DESC Returns the
current action
description for
the change
document

PCMS_ATTR_DETAIL_DESC Returns the
detailed
description of
the change
document

toFile is a pointer to where the description is to be
copied. If *toFile is a NULL pointer, this function
will allocate memory to hold the description. It is
the responsibility of the caller to free this memory
after use.

size is a pointer to an integer into which the description
size is returned.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsGetAttrFile - Get Change Document Descriptions 133
Return Codes

PcmsGetAttrFile() returns:

PCMS_OK on success

PCMS_FAIL on failure to find any data

PCMS_ERROR on failure and sets PcmsErrorNo, PcmsErrorStr,
PcmsDbErrorNo and PcmsDbErrorStr.
PVCS Dimensions Developer’s Toolkit Reference Guide

134 Chapter 3 DTK API Functions for C/C++
PcmsEvntFree – Free Memory

Purpose

This function is a wrapper to the C function free(). It must be used
to free memory allocated by DTK functions, such as PcmsQuery().
The reason for this is that on some platforms, like Windows NT/
2000, the memory that is allocated within a shared library must
be freed by the same shared library. If this is not done, then
memory errors begin to occur.

Prototype
void PcmsEvntFree (void *ptr);

Parameters

ptr is a pointer to the memory block that will be freed.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsEvntMalloc – Allocate Memory 135
PcmsEvntMalloc – Allocate Memory

Purpose

This function is a wrapper to the C function malloc. It must be
used to allocate memory within a DTK application. The reason
for this is that on some platforms, like Windows NT/2000, the
memory that is allocated within a shared library must be freed
by the same shared library. If this is not done, then memory
errors begin to occur. This function is thus provided as a
convenience to ensure that all the memory is allocated within
the context of the same shared library.

Prototype
void* PcmsEvntMalloc (int size);

Parameters

size is the size of the memory to allocate.
PVCS Dimensions Developer’s Toolkit Reference Guide

136 Chapter 3 DTK API Functions for C/C++
PcmsEvntCalloc – Allocate Zero Initialized
Memory

Purpose

This function is a wrapper to the C function calloc(). It must be
used to allocated zero initialized memory within a DTK
application. The reason for this is that on some platforms, like
Windows NT/2000, the memory that is allocated within a shared
library must be freed in the same shared library. If this is not
done, then memory errors begin to occur. This function is thus
provided as a convenience to ensure that all the memory is
allocated within the context of the same shared library.

Prototype
void* PcmsEvntCalloc (int size);

Parameters

size is the size of the memory to allocate.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsEvntRealloc – Re-allocate Memory 137
PcmsEvntRealloc – Re-allocate Memory

Purpose

This function is a wrapper to the C function realloc(). It must be
used to re-allocate memory within a DTK application. The reason
for this is that on some platforms, like Windows NT/2000, the
memory that is allocated within a shared library must be
re-allocated by the same shared library. If this is not done, then
memory errors begin to occur. This function is thus provided as a
convenience to ensure that all the memory is maintained within
the context of the same shared library.

Prototype
void* PcmsEvntRealloc (void *ptr, int size);

Parameters

ptr is a pointer to the block of memory that will be
resized.

size is the size of the new memory.
PVCS Dimensions Developer’s Toolkit Reference Guide

138 Chapter 3 DTK API Functions for C/C++
PcmsGetCommandLine – Get the Dimensions
Command

Purpose

This function will return a constant string pointer to a copy of the
command that was submitted to Dimensions. This is intended to
allow you, from within a DTK event, to determine what
Dimensions command was actually run.

Prototype
const char* PcmsGetCommandLine (void);

Parameters

None
PVCS Dimensions Developer’s Toolkit Reference Guide

Attribute Macros 139
Attribute Macros
Defined in the file pcms_api.h are a set of macros which have
been provided to help you in writing your application. These
macros are public but the structures that they use may change in
the future and should not be used directly.

Initialize PcmsObjStruct attrs
■ PcmsInitAttrStruct(objPtr, number)

This macro allocates number zero initialized memory
structure of type PcmsObjAttrStruct to the attrs pointer and
updates noAttrs accordingly.

The parameters are:

NOTE This macro works only on PcmsObjStructs that have
not had attributes already setup.

Add attrDef Structures
■ PcmsAddAttrDefs(objPtr)

This macro allocates zero memory for all the
PcmsObjAttrDefStruct(s) within a PcmsObjStruct.

The parameter is:

NOTE This macro works only on PcmsObjStructs that have
NULL objPtr.attr[n].attrDefs.

objPtr a pointer to a PcmsObjStruct.

number the number of PcmsObjAttrStruct(s) for which
to allocate memory.

objPtr a pointer to a PcmsObjStruc.
PVCS Dimensions Developer’s Toolkit Reference Guide

140 Chapter 3 DTK API Functions for C/C++
Single-Value Attributes (SVA)
■ PcmsSvaSetVal (valuePtr, string, reserved)

This macro sets an attribute value in a single-value attribute.

The parameters are:

■ PcmsSvaReSetVal (valuePtr, string, reserved)

This macro resets an attribute value in a single-value
attribute.

The parameters are:

■ PcmsSvaGetVal (valuePtr)

This macro returns a char * corresponding to the string value
of this attribute.

The parameter is:

valuePtr the value structure being initialized and set (for a
PcmsObjStruct object objPtr and attribute
number n, valuePtr is objPtr.attrs[n].value).

string the value itself expressed as a char * string.

reserved is an integer field reserved for future use (use 0).

valuePtr the value structure being initialized and set (for
a PcmsObjStruct object objPtr and attribute
number n, valuePtr is objPtr.attrs[n].value).

string the value itself expressed as a char * string.

Reserved is an integer field reserved for future use (use 0).

valuePtr the value structure pointer being queried (for an
object objPtr and attribute number n, valuePtr is
objPtr.attrs[n].value).
PVCS Dimensions Developer’s Toolkit Reference Guide

Attribute Macros 141
Multi-Value Attributes (MVA)

Instead of a single value, multiple-valued attributes maintain a
value-set which is accessed through the use of an index. You can
use the following macros to access and set this value-set.

■ PcmsMvaSetVal (valueSetPtr, index, string, reserved)

This macro appends a value to a value-set.

The parameters are:

■ PcmsMvaNumVals(valueSetPtr)

This macro returns an integer value corresponding to the
number of values currently in the value-set.

The parameter is:

■ PcmsMvaGetVal (valueSetPtr, index)

This macro returns the value of the value-set at a specific
index as a char * string.

The parameters are:

valueSetPtr the value set being added to (for an object
objPtr and attribute number n the valueSetPtr
is objPtr.attrs[n].value).

index the index into the list. This index is
incremented within the macro. For the first
value in the value-set, this index is zero.

string the value itself as a char * string.

reserved is an integer field reserved for future use (use
0).

valueSetPtr the value set to query.

valueSetPtr the valueSet to query.

index the integer index in the list of this attribute’s
value-set.
PVCS Dimensions Developer’s Toolkit Reference Guide

142 Chapter 3 DTK API Functions for C/C++
■ PcmsMvaReSetVal(valueSetPtr, index, string,reserved)

This macro frees a certain indexed value and writes the new
string into the same position given by the index.

The parameters are:

■ PcmsMvaFree (valueSetPtr)

This macro frees a complete PcmsMva i.e. frees the whole list.

The parameters is:

NOTE It is useful to note that the SVA macros are only a
convenience. It is possible to access all attribute value structures
with PcmsMvaNumVals() and PcmsMvaGetVal(). For single value
attributes PcmsMvaNumVals() will return 1.

valueSetPtr the value-set to manipulate.

index the integer index in the list of this attribute’s
value-set value.

string the new string.

reserved reserved

valueSetPtr the valueSet to free.
PVCS Dimensions Developer’s Toolkit Reference Guide

143
4 DTK API Functions for Win32
Client Installations

In this Chapter

For this section… See page…

Introduction 144

Building Client Applications 144

Sample Code Fragment 145

PcmsClntApiConnect - Connect to a
Dimensions Database

146

PcmsClntApiSilentConnect - Connect
Silently to a Dimensions Database

147

PcmsClntApiDisconnect - Disconnect
from a Dimensions Database

149

PcmsClntApiGetLastError - Get the
Last Dimensions Message

150

PcmsClntApiGetLastErrorEx - Get the
Last Dimensions Message

152

PcmsClntApiModeBinary - Set File
Transfer Mode to Binary

154

PcmsClntApiModeText - Set File
Transfer Mode to ASCII

156

PcmsClntApiFree – Free Memory 158

PcmsClntApiExecCommand - Execute
a Dimensions Command

159

Additional Supported DTK Functions 160
PVCS Dimensions Developer’s Toolkit Reference Guide

144 Chapter 4 DTK API Functions for Win32 Client Installations
Introduction
This chapter describes a set of functions that have been
specifically written for Windows 98/NT/2000 client machines that
have had only the Dimensions Windows clients (CD-2) installed.
These functions give you access to the full functionality of the
DTK but are specifically written for Win32 clients.

The description of each function has the following components

Building Client Applications
These functions are available in the supplied clientapi.h and
clientapi.lib files located in the directory
"<Dimensions_Root>\pcms_api\". Any source file that
references the functions or constants must include this file.

If your application references connection functions, such as
PcmsClntApiConnect(), you must include the standard WinD2K
file windows.h to properly compile the application.

Purpose What the function does

Prototype The function prototype

Parameters Description of the parameters used in the
function

Return Codes Codes returned (please refer to DTK return
codes on page 20 for further details)

Sample Sample function call (if applicable)

Comments Additional relevant information (if
applicable)

Related
Functions

Any related DTK function calls
PVCS Dimensions Developer’s Toolkit Reference Guide

Sample Code Fragment 145
NOTE Starting with Dimensions 7.1, the pcms_api.lib library
file has been renamed to pcms_apiXX.lib, where XX is the
version number of the Dimensions release. For example, for
Dimensions 7.1, the file is named pcms_api71.lib.

Sample Code Fragment
PcmsObjStruct pObj = { 0 };
int conId = 0;
char errBuff[1024];

/* API will now connect and show the login dialog */
conId = PcmsClntConnect((HWND)NULL);
/* This is an example public API call looking for the Workset

"TEST_WORKSET" */
if (PcmsInitSpec(conId, "TEST:TEST_WORKSET",

PCMS_WORKSET, &pObj)!=PCMS_OK)
{

/* API called failed so get the error and display it */
(void)PcmsClntGetLastError(conId, errBuff,

sizeof(errBuff));
(void)fprintf(stderr, errBuff);
return;

}
/* List the directories in the Workset "TEST_WORKSET" */
(void)PcmsClntExecCommand(conId, "LWSD TEST:TEST_WORKSET");
/* Now display the output */
(void)PcmsClntGetLastError(conId, errBuff, sizeof(errBuff));
(void)fprintf(stdout, errBuff);
/* Now disconnect */
(void)PcmsClntApiDisconnect(conId);
PVCS Dimensions Developer’s Toolkit Reference Guide

146 Chapter 4 DTK API Functions for Win32 Client Installations
PcmsClntApiConnect - Connect to a
Dimensions Database

Purpose

This function provides you with a Login window allowing you to
connect to a Dimensions database. This function will return a
connectId (integer) that represents your database connection.

Prototype
int
PcmsClntApiConnect
(

HWND parent=NULL
);

Parameters

Return Codes

PcmsClntApiConnect() returns:

Related Functions

PcmsClntApiSilentConnect()

HWND parent is the parent window for the login dialog.

connectId on successfully completing the connection to
the Dimensions server.

PCMS_ERROR on error

PCMS_FAIL on failure
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsClntApiSilentConnect - Connect Silently to a Dimensions Database 147
PcmsClntApiSilentConnect - Connect Silently
to a Dimensions Database

Purpose

This function provides you with a connection to a Dimensions
database as specified by your input parameters. This function
will return a conId that represents your connection to the
Dimensions Server.

Prototype
int
PcmsClntApiSilentConnect
(

char *user,
char *password,
char *host,
char *pcms_install,
char *db_name,
char *db_pword,
char *db_node

);

Parameters

user is your operating system login name.

password is your operating system password.

host is the Dimensions server node name that you wish
to connect to.

pcms_install is the Dimensions server installation directory e.g.
/usr/pcms/dimensions7_1/.

continued
PVCS Dimensions Developer’s Toolkit Reference Guide

148 Chapter 4 DTK API Functions for Win32 Client Installations
Return Codes

PcmsClntApiSilentConnect() returns:

Related Functions

PcmsClntApiConnect()

db_name is the name of the Dimensions database that you
wish to connect to e.g. pcms_tool.

db_pword is the password of the database.

db_node is the ORACLE service name assigned to the node
where the oracle database is located.

int connectId on successful connection

PCMS_ERROR on error

PCMS_FAIL on failure
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsClntApiDisconnect - Disconnect from a Dimensions Database 149
PcmsClntApiDisconnect - Disconnect from a
Dimensions Database

Purpose

This function disconnects from the Dimensions database as specified
by the conId. The connectId must be a valid connectId returned by
PcmsClntApiConnect() or PcmsClntApiSilentConnect().

Prototype
int
PcmsClntApiDisconnect
(

int connectId

);

Parameters

Return Codes

PcmsClntApiDisconnect() returns:

Related Functions

PcmsClntApiConnect(), PcmsClntApiSilentConnect()

connectId is the database connection identifier.

PCMS_OK on success

PCMS_ERROR on error

PCMS_FAIL on failure
PVCS Dimensions Developer’s Toolkit Reference Guide

150 Chapter 4 DTK API Functions for Win32 Client Installations
PcmsClntApiGetLastError - Get the Last
Dimensions Message

Purpose

This function allows you to access the output from the last
Dimensions command that was run on the server via
PcmsClntApiExecCommand().

Prototype
int
PcmsClntApiGetLastError
(

int connectId,
char *errorBuffer,
int maxLength

);

Parameters

connectId is the database connection identifier.

errorBuffer is a pointer to a user allocated character array
that is populated with the text of the server
message.

maxLength is the maximum length of the server message
to be displayed.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsClntApiGetLastError - Get the Last Dimensions Message 151
Return Codes

PcmsClntApiGetLastError() returns:

Related Function

PcmsClntApiGetLastErrorEx()

PCMS_OK on success

PCMS_ERROR on error

PCMS_FAIL on failure
PVCS Dimensions Developer’s Toolkit Reference Guide

152 Chapter 4 DTK API Functions for Win32 Client Installations
PcmsClntApiGetLastErrorEx - Get the Last
Dimensions Message

Purpose

This function allows you to access the output from the last
Dimensions command that was run on the server via
PcmsClntApiExecCommand(). The functionality of this command
is the same as for PcmsClntApiGetLastError() except that the
buffer size is dynamically allocated.

Prototype
int
PcmsClntApiGetLastErrorEx
(

int connectId,
char **errorBuffer

);

Parameters

connectId is the database connection identifier.

errorBuffer is a pointer to a contiguous block of allocated
memory that is populated with the message text.

It is the responsibility of the calling application to
free this pointer when it is no longer required.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsClntApiGetLastErrorEx - Get the Last Dimensions Message 153
Return Codes

PcmsClntApiGetLastErrorEx() returns:

Related Function

PcmsClntApiGetLastError()

PCMS_OK on success

PCMS_ERROR on error

PCMS_FAIL on failure
PVCS Dimensions Developer’s Toolkit Reference Guide

154 Chapter 4 DTK API Functions for Win32 Client Installations
PcmsClntApiModeBinary - Set File Transfer
Mode to Binary

Purpose

This function sets the file transfer format to binary for any
subsequent item commands that are issued.

Prototype
int
PcmsClntApiModeBinary
(

int connectId

);

Parameters

Return Codes

PcmsClntApiModeBinary() returns:

connectId is the database connection identifier.

PCMS_OK on success

PCMS_ERROR on error

PCMS_FAIL on failure
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsClntApiModeBinary - Set File Transfer Mode to Binary 155
Comments

You must use this command if you are going to perform
operations that require file transfer from the client to the server
(or visa versa) to occur in binary mode. An example of this might
be getting a binary item into your PC. When you perform any
file transfer operations, such as check in (RI), Dimensions will not
validate the format of the file being transferred.
PVCS Dimensions Developer’s Toolkit Reference Guide

156 Chapter 4 DTK API Functions for Win32 Client Installations
PcmsClntApiModeText - Set File Transfer
Mode to ASCII

Purpose

This function sets the file transfer format to ASCII for any
subsequent item commands that are issued.

Prototype
int
PcmsClntApiModeBinary
(

int connectId

);

Parameters

Return Codes

PcmsClntApiModeText() returns:

connectId is the database connection identifier.

PCMS_OK on success

PCMS_ERROR on error

PCMS_FAIL on failure
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsClntApiModeText - Set File Transfer Mode to ASCII 157
Comments

You must use this command if you are going to perform
operations that require file transfer from the client to the server
(or visa versa) to occur in ASCII mode. An example of this might
be getting an ASCII item into your PC. When you perform any
file transfer operations, such as check in (RI), Dimensions will not
validate the format of the file being transferred.
PVCS Dimensions Developer’s Toolkit Reference Guide

158 Chapter 4 DTK API Functions for Win32 Client Installations
PcmsClntApiFree – Free Memory

Purpose

This function is a wrapper to the C function free(). It must be used
to free memory allocated by PcmsClnt API DTK functions, such as
PcmsClntApiGetLastErrorEx(). The reason for this is that on some
platforms, like Windows NT/2000, the memory that is allocated
within a shared library MUST be freed by the same shared library.
If this is not done, then memory errors begin to occur.

Prototype
void PcmsClntApiFree (void *buffer);

Parameters

buffer is a pointer to the memory block that will be freed.
PVCS Dimensions Developer’s Toolkit Reference Guide

PcmsClntApiExecCommand - Execute a Dimensions Command 159
PcmsClntApiExecCommand - Execute a
Dimensions Command

Purpose

This function sends a command to the Dimensions server
specified by connectId.

Prototype
int
PcmsClntApiExecCommand
(

int conId,
char *command

);

Parameters

Return Codes

PcmsClntApiExecCommand() returns:

connectId is the database connection identifier.

command is a pointer to a user allocated character array that
is populated with the command to be executed.

PCMS_OK on success

PCMS_ERROR on error

PCMS_FAIL on failure
PVCS Dimensions Developer’s Toolkit Reference Guide

160 Chapter 4 DTK API Functions for Win32 Client Installations
Additional Supported DTK Functions
In addition to the specific Win32 functions described in this
chapter, the following standard Dimensions DTK functions are
also available. These functions are fully documented in Chapter 3.

* NOTE Functions marked with an asterisk (*) require that the
following file be installed on each client:
Dimensions_Root\msg\pcms_api_sql_uk.msb. This can be
accomplished by a default client installation or by copying the file
from the Dimensions server, where it resides in the same
directory.

PcmsObjGetRels() * PcmsLovFree()

PcmsObjGetBackRels() * PcmsGetRSNamest() *

PcmsCntrlPlanGet() * PcmsGetRSAttrs() *

PcmsQuery() * PcmsGetUserRelTypes() *

PcmsPendGet() * PcmsFullQuery() *

PcmsInitSpec() PcmsGetUserRoles() *

PcmsInitUid() PcmsGetCandidates() *

PcmsGetAttrs() PcmsGetPendingUsers() *

PcmsObjFree() PcmsGetWsetObj() *

PcmsPendWhoGet() PcmsEvntMalloc()

PcmsAttrDefInit() PcmsEvntCalloc()

PcmsGetAttrDefNum() * PcmsEvntRealloc()

PcmsPopulate() * PcmsAttrGetLov() *

PcmsEvntFree() PcmsAttrValidate() *
PVCS Dimensions Developer’s Toolkit Reference Guide

161
5 Dimensions Events Callout
Interface

In this Chapter

For this section… See page…

Description 162

Shared Libraries 162

Public Function Call 163

Event Callout Interface 164

Determining the Event you want 168

First and Second Event Calls 169

Event Call Summary 171

Writing a DTK Callout Event 171

DTK Event Internals 176

Changing System Attributes on
Validate Events

179

Changing User Attributes on
Validate Events

180

Recommendations on how to
Change Attribute Values

180

Calling DTK Functions within
Events

181

Using the ptrEventInfo in Events 182

Event Examples 184

Events - A Final Word and a
Warning

184
PVCS Dimensions Developer’s Toolkit Reference Guide

162 Chapter 5 Dimensions Events Callout Interface
Description
This chapter outlines the functionality, design and
implementation of applications using the Dimensions Event
Callout Interface. Before reading this chapter ensure that you
familiarize yourself with the concept of shared libraries because
it is via this mechanism that this event interface is implemented.

Shared Libraries
The Dimensions Event Callout Interface is provided by giving you
access to a public function call that is invoked when certain
Dimensions commands are run. This function is called
userSuppliedFunction() and is resolved in a shared library called
libpcmsu. On a default Dimensions installation a stub version of
this library is provided. If you wish to implement your own Event
Callout, you will need to build your own shared library and use
this in place of the stub.

For more information on how to build shared libraries please
refer to your system documentation or for guidelines refer to the
examples provided in:

■ “<Dimensions_ROOT>/pcms_api/examples/” for UNIX

■ “<Dimensions_ROOT>\pcms_api\examples\” for
Windows.
PVCS Dimensions Developer’s Toolkit Reference Guide

Public Function Call 163
Public Function Call
The prototype for the public function call userSuppliedFunction() is:

int userSuppliedFunction(
PcmsEventStruct *ptrPcmsEventStruct,
PcmsObjStruct *ptrObj,
PcmsObjStruct *ptrUser,
char **ptrErrorMessage,
int *noEventInfo,
void **ptrEventInfo);

where the parameters are:

ptrPcmsEventStruct is a pointer to a PcmsEventStruct in which
the details on the current event being fired
are held.

ptrObj is a pointer to a PcmsObjStruct which holds
the object details pertaining to the
Dimensions’ object currently being
processed.

ptrUser is a pointer to a PcmsObjStruct which holds
the details on the user currently running
the event.

ptrErrorMessage is a pointer to a pointer which allows you
to setup an error message to be printed
instead of the default Dimensions message.

continued
PVCS Dimensions Developer’s Toolkit Reference Guide

164 Chapter 5 Dimensions Events Callout Interface
Event Callout Interface
As indicated previously, when certain Dimensions commands are
run the public function userSuppliedFunction() is invoked with a
number of parameters. These parameters are used to specify
what event is being fired; what Dimensions object is being
affected, and finally which type of Dimensions command is being
run. Each time an event is fired the following hierarchy of calls is
made to userSuppliedFunction():

■ Validate event call (fired ONLY when a user or system
attribute has changed)

■ Pre-event call

■ Post-event call.

Each of the event calls allows you to perform a number of
operations on the Dimensions object on which the event has
been called.

You can access the type of event being fired by examining the
ptrPcmsEventStruct as described on page 168.

noEventInfo is an integer variable which is used in
context with ptrEventInfo to access
members of that pointer.

ptrEventInfo is a pointer to a void *pointer which is
populated with different information
depending on the event called.

For PCMS_EVENT_MAIL,
PCMS_EVENT_DLGI and
PCMS_EVENT_DLGC events this pointer will
point to an array of PcmsUserRoleStructs.

For a PCMS_EVENT_RELATE or
PCMS_EVENT_UNRELATE event this pointer
will point to an array of PcmsRelStructs.
PVCS Dimensions Developer’s Toolkit Reference Guide

Event Callout Interface 165
Validate Events
Validate events are called prior to any Dimensions validation
being run on the data supplied. Typically, you can use validation
events to inspect information (such as the object details, default
and user attributes) and then change this information. You
could, for example, use this event to implement your own
automatic item id generator or perform extra validation on user-
defined date attributes. Once this event has been fired
Dimensions will then proceed with its normal validation checks.
This event is indicated by the use of the constant
PCMS_EVENT_VALIDATE_OP.

NOTE Validate events are fired ONLY when user or system
attributes change as a result of a command.

Pre-events

Pre-events are called prior to the Dimensions command being
executed. You can use this event to stop the execution of this
command by returning the failure status PCMS_FAIL. If you
populate the ptrErrorMessage, then this error string will be
displayed via whatever interface invoked the command.
Typically, you can use this event to perform any specific
validation before deciding to let the command proceed. This
event is indicated by the use of the constant
PCMS_EVENT_PRE_OP.

Post-events

Post-events are called after the Dimensions command has been
run. Typically you can use this event to perform any ‘clean up’ or
post-command logging to other applications. This event is
indicated by the use of the constant PCMS_EVENT_POST_OP.
PVCS Dimensions Developer’s Toolkit Reference Guide

166 Chapter 5 Dimensions Events Callout Interface
Event Types

In addition to the event hierarchy described in the previous sub-
sections, each event fired also has an event type which relates to
the type of Dimensions command being run. These event types
are:

While a single Dimensions command, such as ‘getting (fetching)
an item’, can fire a single event type (PCMS_EVENT_FETCH) it is
also possible for a command to generate multiple different
events. Consider, for example, the following command:

EDI “FS:TEST.A-SRC,1” /REV=2.1/ATTRIBUTE=(COMPLEXITY=“Delta7”)

Event Type Activity to a Dimensions Object

PCMS_EVENT_ACTION Actioned

PCMS_EVENT_CREATE Created

PCMS_EVENT_CANCEL Check out of object is canceled

PCMS_EVENT_DELETE Deleted

PCMS_EVENT_DLGC Change document is delegated to a
user

PCMS_EVENT_DLGI Item is delegated to a user

PCMS_EVENT_EXTRACT Object is checked out (or extracted)

PCMS_EVENT_FETCH Object is gotten (fetched) (or
browsed)

PCMS_EVENT_MAIL A Dimensions mail message is being
sent

PCMS_EVENT_RELATE Object is related to another object

PCMS_EVENT_UNRELATE Object is unrelated from another
object

PCMS_EVENT_RETURN Object is checked in (or returned)

PCMS_EVENT_UPDATE Updated
PVCS Dimensions Developer’s Toolkit Reference Guide

Event Callout Interface 167
This command performs a check out, check in, and an update of
attribute values. Thus, if you ran the command as described
previously, the following events would be fired.

If you added additional parameters to this command, such as /
STATUS or /RELATE_CHDOC, other events would also have been
fired.

The table below describes the commands which fire events and
the objects types they involve.

Event Type Action to a Dimensions Item

PCMS_EVENT_EXTRACT Checked out from Dimensions

PCMS_EVENT_UPDATE Attributes updated

PCMS_EVENT_RETURN Checked in to Dimensions

PCMS_EVENT_MAIL Notification of new item sent via e-
mail

EventId

PA
R

T

IT
EM

C
H

D
O

C

W
K

SE
T

B
A

SE
LI

N
E

R
EL

EA
SE

PCMS_EVENT_

 — CREATE CP, CPV CI, IP CC DWS,
MWS

CBL,
CMB,
CRB

REL

 — EXTRACT UP EI, EDI,
UI, IP

 — RETURN UP RI, EDI,
UI, IP

 — UPDATE UPA, UP,
CP, CPV

CI, EI,
EDI, RI,
UI, UIA,
IP

CC, UC

 — DELETE DPV DI, PUR RWS DLB DREL

 — ACTION SPV, UP AI, SI AC
PVCS Dimensions Developer’s Toolkit Reference Guide

168 Chapter 5 Dimensions Events Callout Interface
Determining the Event you want
When the userSuppliedFunction() is invoked, one of the
parameters passed in is a pointer to a PcmsEventStruct that can
be interrogated for details such as:

■ the event type e.g. PCMS_EVENT_CREATE

■ where in the hierarchy the event is being fired e.g. validate or
pre-event

■ the object type the event is being fired on e.g. PCMS_ITEM.

By examining the following fields of the PcmsEventStruct you can
trap the event you specifically require.

 — FETCH FI BC

 — RELATE RPCD RICD RCCD

 — UNRELATE XPCD XICD XCCD

 — MAIL (N/A) AI, CI, RI,
UI

AC

 — DLGC (N/A) DLGC

 — CANCEL (N/A) CIU

 — DLGI DLGI

EventId

PA
R

T

IT
EM

C
H

D
O

C

W
K

SE
T

B
A

SE
LI

N
E

R
EL

EA
SE

eventId the event type

whenCalled the position in the event hierarchy

objType the type of object that the event was fired on.
PVCS Dimensions Developer’s Toolkit Reference Guide

First and Second Event Calls 169
First and Second Event Calls
Populating all the parameters for an event can take time,
especially if you are connected to a remote database over a
WAN. As a result of this, each time an event is to be fired you get
a chance to determine whether or not you are really interested
in that event. This separation is known as the ‘first and second
call’ to an event.

The first call to an event populates only the sparse details on the
Dimensions object and the PcmsEventStruct to allow you to
determine if you are interested in this event. The specific details
provided in the PcmsObjStruct depend on what command is
called, on what object, and under what circumstances--as shown
in the next two tables.

Table 5-1. First call details for object creation operations

Object type First call details

Change Docs objType, productId, typeName, status,
typeUid

Items objType, typeUid, typeName, productId,
objId, revision, userName, status, dateTime

Baselines objType, typeUid, typeName, productId,
objId, variant, revision, userName, status,
dateTime

Parts objType, typeUid, typeName, productId,
objId, userName, dateTime

Releases objType, productId, objId

Worksets objType, typeUid, typeName, productId,
objId, variant, revision, description,
userName, status, dateTime
PVCS Dimensions Developer’s Toolkit Reference Guide

170 Chapter 5 Dimensions Events Callout Interface
A first call event can be determined by checking if:

ptrUser == (PcmsObjStruct *)0 AND ptrErrorMessage == (char *)0

If you select the first call, then only the ptrPcmsEventStruct will
be fully populated. The ptrObj will only have the object-
specification fields and uid filled in. If as a result of examining
these partial details, you decide that you really want this event,
then returning the status PCMS_OK will generate a second event
call. If you are not interested in this event, then return
PCMS_FAIL and the second call to this event will not be fired.

The second event call can be regarded as the ‘real’ event call. This
has all the data structures filled in and allows you to access all the
attribute information for the object. It is on this call that your
event should perform its operation.

Table 5-2. First call details for other operations

Object type First call details

Change Docs uid, objType, typeUid, typeName, productId,
objId, userName, status, dateTime

Items uid, objType, typeUid, typeName, productId,
objId, variant, revision, description,
userName, status, dateTime

Baselines uid, objType, typeUid, typeName, productId,
objId, variant, revision, userName, status,
dateTime

Parts uid, objType, typeUid, typeName, productId,
objId, variant, revision, description,
userName, status, dateTime

Releases uid, objType, productId, objId, dateTime

Worksets uid, objType, typeUid, typeName, productId,
objId, variant, revision, description,
userName, dateTime
PVCS Dimensions Developer’s Toolkit Reference Guide

Event Call Summary 171
Event Call Summary
The following table summarizes the event callout mechanism.

Steps 3, 7 and 11 occur when the real VALIDATE, PRE and POST
EVENTS are done.

Writing a DTK Callout Event
This section describes how to design and write a DTK event, the
pitfalls to watch out for, and in what situations an event is
applicable.

Step Command

1 Read Dimensions Command

2 FIRST CALL VALIDATE EVENT and check that VALIDATE
EVENT is required

3 If VALIDATE EVENT is required, then call VALIDATE EVENT
again

4 If VALIDATE EVENT not required, then END

5 Evaluate User Data and Execute the Dimensions Command

6 FIRST CALL PRE-EVENT and check that PRE-EVENT is
required

7 If PRE-EVENT is required, then call PRE-EVENT again with
fully detailed data

8 If PRE-EVENT not required, then END

9 COMMIT Dimensions Command to database

10 FIRST CALL POST-EVENT and check that POST-EVENT is
required

11 If POST-EVENT is required, call POST-EVENT again with
fully detailed data
PVCS Dimensions Developer’s Toolkit Reference Guide

172 Chapter 5 Dimensions Events Callout Interface
Is an Event the Solution for you?

Before you start to write an event to implement your solution,
you must decide if an event is what you really need. To help you
decide bear in mind the following questions.

■ Is the functionality that you seek to achieve already in
Dimensions?

If you are seeking to implement stronger rules for object
relationships or attributes, this functionality is already
available in Dimensions.

■ Is the functionality that you seek to achieve initiated by a
Dimensions command?

The events are strictly intended to allow you to perform inline
processing or checking on a specific object. They are not
intended to allow you to run multiple Dimensions commands
on the same object. When a validate-event or pre-event is
fired on an object, then that object becomes locked until the
transaction has been committed to the database. If you try to
spawn another Dimensions command, then you run the
following risks.

• The Dimensions command that you spawned will be
suspended waiting for the lock to be released; and it never
will be released until a time-out has occurred.

• The Dimensions command will cause the same event to be
fired that will spawn yet another Dimensions command
that calls the same event spawning yet another command,
etc., and so on until your machine locks up.

If you are intending to use an event to spawn other
Dimensions-related commands, then you are strongly advised
to use a separate DTK client application to perform this
sequencing of commands.

■ Does the operation you want to capture actually fire an
event?
PVCS Dimensions Developer’s Toolkit Reference Guide

Writing a DTK Callout Event 173
Not all Dimensions commands fire events. You need to be
sure that the operation you want to capture actually fires an
event.

Designing your Event

When you have decided that your solution requires an event, you
need to decide which event you need to capture, and which type of
event you have to use. Events are fired when you run a Dimensions
command, so decide on the list of Dimensions commands that
invoke the events you want and scope this list to the type of objects
you wish to process. Examining this list you may discover that you
may need to filter out certain events, commands or objects to obtain
just the processing you want. You will need to code this filtering
into your event. When you are looking at this list remember that
additional parameters can call additional events. You can filter the
events that you select by either examining the ptrPcmsEventStruct
as described previously in ““Public Function Call” on page 163, or
you can access the actual Dimensions command being run via
PcmsGetCommandLine() and filter on this.

Once you know the list of commands and type of events that you
are going to trap, you need to consider where in the callout
hierarchy this trapping will occur. The basic rules are to trap:

■ the validate event if you wish to change any information

■ the pre-event if you wish to be able to stop the operation

■ the post-event if you wish to perform an action after the
Dimensions operation has committed data to the database
and freed all the locks on that object.
PVCS Dimensions Developer’s Toolkit Reference Guide

174 Chapter 5 Dimensions Events Callout Interface
Suggestions for More Common Operations

■ Changing attributes (user and system) or setting defaults

To change, set or reformat attributes you have to capture the
PCMS_EVENT_UPDATE at the PCMS_EVENT_VALIDATE_OP
stage in the call hierarchy.

■ Changing object Id on creation

If you wish to wish to change the object identifier or filename
used when an object is created, then you have to capture the
PCMS_EVENT_CREATE and PCMS_EVENT_UPDATE events at
the PCMS_EVENT_VALIDATE_OP stage in the call hierarchy.

■ Checking user files before they are returned (checked in) to
Dimensions

If you wanted to perform some custom formatting or checks
on user files before they are returned to Dimensions, then
you would need to capture the PCMS_EVENT_RETURN event
at the PCMS_EVENT_PRE_OP stage in the call hierarchy.

■ Allowing the action of an object only if certain criteria are
matched

If you have specific checks that you wish to perform before
objects are actioned from one state to another e.g. releasing
a baseline to test, then you have to capture the
PCMS_EVENT_ACTION event at the PCMS_EVENT_PRE_OP
stage in the call hierarchy.

■ Logging to another application that a Dimensions operation
has occurred

If you have integrated Dimensions with another application
and wish to signal to that application that a command has
been run, then you have to capture all the events at the
PCMS_EVENT_POST_OP stage in the call hierarchy.
PVCS Dimensions Developer’s Toolkit Reference Guide

Writing a DTK Callout Event 175
Writing your Event

You have to write your event code with the
userSuppliedFunction() as the interface point between
Dimensions and your event code. The return codes from this
function call are the standard PCMS_OK, PCMS_FAIL and
PCMS_ERROR. These return calls have the following effects:

First Event Call

PCMS_OK causes a second event call to occur.

PCMS_FAIL causes Dimensions to ignore this event and
continue with its normal processing for the
operation; no second event call will be made.

Second Event Call

PCMS_EVENT_VALIDATE_OP PCMS_OK will allow the
Dimensions operation to
continue. If any attributes have
been changed, then the new
values will be used.

PCMS_FAIL will cause the
Dimensions operation to fail and
any error messages in the
ptrPcmsErrorMessage pointer
will be printed.

PCMS_ERROR is the same as
PCMS_FAIL

PCMS_EVENT_PRE_OP PCMS_OK will allow the
Dimensions operation to
continue.

continued
PVCS Dimensions Developer’s Toolkit Reference Guide

176 Chapter 5 Dimensions Events Callout Interface
In the first event call you need to interrogate the
ptrPcmsEventStruct to determine whether or not to trap this
event and, if so, return PCMS_OK, else return PCMS_FAIL.

In the second event call you need to place the code to support
your event logic and return the appropriate status.

DTK Event Internals
When an event is passed to your function you are able to both
manipulate the data supplied and/or view many of the internal
changes that have occurred or will occur on an object as a result
of the Dimensions command. This section discusses what
information these pointers give you and how you can use them
to achieve various different effects.

■ The PcmsEventStruct pointer – ptrPcmsEventStruct

This pointer is the most important structure passed down to
an event. It is used to both control the event operation and
also to indicate what attributes (both user and system) have
been affected. How to determine which event is being called

PCMS_FAIL will cause the
Dimensions operation to fail and
any error messages in the
ptrPcmsErrorMessage pointer
will be printed.

PCMS_ERROR is the same as
PCMS_FAIL.

PCMS_EVENT_POST_OP Because the operation has been
completed, the status at this
point is irrelevant, but for
consistency you should return
PCMS_OK.

Second Event Call
PVCS Dimensions Developer’s Toolkit Reference Guide

DTK Event Internals 177
has already been discussed. How the attributes are controlled
is determined via the noAttrsChanged and attrsChanged
members of this pointer.

When events are fired, any system or user-defined attributes
that have been modified as a result of the command are
populated into the noAttrsChanged and attrsChanged
members. On a validate-event you can manipulate these
variables to add, reset or remove attribute values.

• If you are resetting an attribute value, then loop through
the attrsChanged pointer until you find the attribute
structure that you wish to change. Once you have found
this attribute, you can use the MVA or SVA macros to reset
the attribute value. If you are resetting values on a MVA
attribute, then you must first free the memory associated
with this attribute via PcmsMvaFree() before adding your
new values.

• If you are adding a new attribute value, then you will
need to:

• resize the attrsChanged pointer to add a new
PcmsObjAttrStruct,

• increment the noAttrsChanged index by 1

• set the appropriate values on the new attribute
structure.

It is important to note that the attrDef pointer in the
attribute structure must be set to NULL.

• If you are removing an attribute definition, then you will
need to resize the attrsChanged pointer to remove this
attribute and decrease the noAttrsChanged index by 1.

■ The PcmsObjStruct – pointer ptrObj

This pointer contains all the details on the object that the
event is currently processing. On a first call to the event this
PVCS Dimensions Developer’s Toolkit Reference Guide

178 Chapter 5 Dimensions Events Callout Interface
object contains only minimal data. On the second call to the
event this object is fully populated.

When you create a new object, such as an item or a part, a
validate-event is fired during which you can manipulate the
contents of this pointer to change the object’s details. You
are able to change entries in the objId, variant and revision
fields. Using this mechanism you could write an event that
changes item Ids to suit your own automatic object identity
generator.

■ The PcmsObjStruct – pointer ptrUser

This pointer contains all the details on the user currently
running the event. This pointer is populated only on the
second call and is ‘read only’.

■ The error pointer – ptrErrorMessage

This pointer allows you to setup an error message that will be
printed by Dimensions when a validate-event or pre-event
returns a status other than PCMS_OK. This allows you to print
your own custom error messages when an event fails.

■ The noEventInfo and ptrEventInfo pointers

These pointers operate together. Their usage is described on
page 182.
PVCS Dimensions Developer’s Toolkit Reference Guide

Changing System Attributes on Validate Events 179
Changing System Attributes on Validate
Events

While there are no restrictions on changing user-defined
attributes in the validate event, you are, however, limited to
what system attributes you can change. While you can modify
the attrsChanged pointer to include any system attribute
definition, only the following will have any affect.

If you specify any other values for system attributes, these will be
ignored.

The above-mentioned attributes can be changed only when a
new object is created or an item is checked out at a new revision.

Event Type

PCMS_EVENT_ :

Object Type

PCMS_ :

System Attribute

PCMS_ATTR_ :

CREATE ITEM FORMAT

FILENAME

LIB_FILENAME

DIRPATH

USER_FILENAME

PART PARTNO

LOCALNO

RELEASE DIRPATH

EXTRACT ITEM FORMAT

USER_FILENAME

RETURN ITEM FORMAT

USER_FILENAME
PVCS Dimensions Developer’s Toolkit Reference Guide

180 Chapter 5 Dimensions Events Callout Interface
Changing User Attributes on Validate Events
There are no restrictions on what you can do with user-defined
attributes on a validate event. However, Dimensions will apply
the usual validation to any attributes that you setup in the
attrsChanged structure. If the attribute is not defined, has the
wrong value or the user does not have the role to change it, then
Dimensions will generate an appropriate error message.

Recommendations on how to Change
Attribute Values

The following steps provide a recommended approach on how
you should change the attrsChanged pointer.

■ Examine the attrsChanged structure in the ptrPcmsEventStruct.

■ If the pointer is NULL, you need to allocate memory to this
pointer (i.e. the size of PcmsObjAttrStruct) and set
noAttrsChanged to 1. Once the memory has been allocated,
then set the members of the attrsChanged pointer to the
appropriate values.

For example, for an SVA

PtrPcmsEventStruct->attrsChanged[0].attr=<ATTR_NO>
PcmsSvaSetValue(ptrPcmsEventStruct->attrChanged[0].value,

”text String”,0);
ptrPcmsEventStruct->attrChanged[0].attrDef =

(PcmsObjAttrDefStruct *)0;

■ If the pointer currently has attributes setup, then you need to
check if the attribute you want to change is currently in that
pointer. You can do this by looping through the
attrChanged[x].attr(s) and looking for a match to your
attribute number. Once you have found a match then use
PcmsSvaSetVal(), or PcmsMvaReSetVal()to reset the value. If
you are resetting the MVA values for an attribute, then
PVCS Dimensions Developer’s Toolkit Reference Guide

Calling DTK Functions within Events 181
remember to free the attribute value set first via
PcmsMvaFree().

■ If the pointer currently has attributes setup, but you cannot
find a match using the search method indicated above then
you need to re-allocate memory to the attrsChanged pointer
to add a new PcmsObjAttrStruct. Using this newly allocated
structure you can set the attribute values as described above
and increment the noAttrsChanged variable by 1.

Calling DTK Functions within Events
When you call DTK functions from within an event the
connection identifier (conId) that you need to use is 0. This is a
special connection identifier that relates to the current
connection that Dimensions has to your database. You do not
need to call PcmsConnect() or PcmsDisconnect() to access the
DTK functions. If you try to use these functions to initiate a
connection to the database or another database, then your
Dimensions session may become unstable.

Specialist DTK Event Functions

There are a number of DTK functions that, although available to
DTK client applications, are specifically aimed at helping you to
write your event. These functions are aimed at memory
management and accessing the Dimensions command line.

DTK Function Description

PcmsEvntFree() Wrapper to free()

PcmsEvntMalloc() Wrapper to malloc()

PcmsEvntCalloc() Wrapper to calloc()

PcmsEvntRealloc() Wrapper to realloc()

PcmsGetCommandLine() Access to the Dimension’s command
that invoked this event.
PVCS Dimensions Developer’s Toolkit Reference Guide

182 Chapter 5 Dimensions Events Callout Interface
Unsupported DTK Function Calls from
within an Event

You can call virtually all the DTK functions from within an event.
There are, however, a number of exceptions to this rule. Some of
the DTK functions, due to the nature of the command that they
are running, are not allowed to be called from within an event.
These functions are listed below.

Using the ptrEventInfo in Events
The special void * pointer ptrEventInfo is filled in when certain
events are fired to provide you with additional information
pertinent to those events. The information contained in the
pointer will change depending on the event which is being fired.

DTK Function Description

PcmsConnect() Connect to a Dimensions database

PcmsDisconnect() Disconnect from a Dimensions
database

PcmsExecCommand() Execute a Dimensions command

PcmsSendCommand() Execute a Dimensions command

PcmsSetDirectory() Change working directory

PcmsSetDbErrorCallback() Set callback functions

PcmsSetCallback() Set callback functions

PcmsSetIdleChecker() Set callback functions

PcmsSetAttrs() Set attributes on a Dimensions
object

PcmsCheckMessages() Check results from Dimensions
commands

PcmsGetConnectDesc() Get current connection details
PVCS Dimensions Developer’s Toolkit Reference Guide

Using the ptrEventInfo in Events 183
The following table lists the structures that this pointer needs to
be typecast to depending on the event being fired.

If you need to access the information in these structures, then
your event needs to do the following:

■ For RELATE and UNRELATE event types typecast the
ptrEventInfo via:

PcmsRelStruct *ptrRel = (PcmsRelStruct*)*ptrEventInfo;

■ For other events typecast the pointer via:

PcmsUserRoleStruct *ptrRel =
(PcmsUserRoleStruct*)*ptrEventInfo;

Once you have typecast the pointer you can use the ptrEventInfo
pointer to access the information. For example, in a MAIL event
you might do the following:

{
PcmsUserRoleStruct *ptrUser =

(PcmsUserRoleStruct*)*ptrEventInfo;
int noUses = *noEventInfo;
int i = 0;

for (i = 0; i < noUsers; i++)
(void)fprintf(fd,”\nFound user : %s”,ptrUser[i].user);

}

In Delegate Events (DLGI and DLGC) the applyDeny and treeWalk
members of PcmsUserRoleStruct have special meanings that

DTK Event DTK Structure

PCMS_EVENT_MAIL PcmsUserRoleStruct

PCMS_EVENT_DLGC PcmsUserRoleStruct

PCMS_EVENT_DLGI PcmsUserRoleStruct

PCMS_EVENT_RELATE PcmsRelStruct

PCMS_EVENT_UNRELATE PcmsRelStruct
PVCS Dimensions Developer’s Toolkit Reference Guide

184 Chapter 5 Dimensions Events Callout Interface
relate to the option specified on the command line. These
meanings are listed below.

Event Examples
The release media contains a number of example events and
makefiles to help you get started. These are contained in the
pcms_api/examples subdirectory in the Dimensions installation
directory.

Events - A Final Word and a Warning
Events are a powerful and versatile way of expanding on
Dimensions rich functionality. They allow you to implement your
own specific process controls and integrations with external
applications. Used well, events can enhance both your working
practices and use of Dimensions. However, if your events have not
been written carefully, you do run the risk of affecting
Dimensions functionality, especially if your event causes memory
corruption. You are strongly advised to test any complex events
thoroughly before deploying them, and if possible use a memory
tracking tool to verify memory use.

Operation applyDeny treeWalk

/ADD Y Y

/DELETE Y Y

/REPLACE Y N
PVCS Dimensions Developer’s Toolkit Reference Guide

185
A Known DTK Event Issues

In this Appendix

For this section… See page…

Missing Events 186
PVCS Dimensions Developer’s Toolkit Reference Guide

186 Appendix A Known DTK Event Issues
This appendix discusses a number of known issues that you
should keep in mind when using DTK events.

Missing Events
Some operations are currently missing events being fired which
you might expect to be fired. The Dimensions commands which
are affected are listed below.

AC – Action Change Document No VALIDATE event is fired.

CBL – Create Baseline No POST_CREATE event is fired.

CMB – Create Merged Baseline No POST_CREATE event is fired.

MWS – Merge workset No POST_CREATE event is fired.
PVCS Dimensions Developer’s Toolkit Reference Guide

187
Index

A

allocate memory 135
allocate zero initialized memory 136
API library file names 20, 145
attribute macros 139
attributes

system-defined 31
user-defined 31

C
change Dimensions default directory 65
check results of Dimensions command 63
client architecture 15
connect silently to a Dimensions database

147
connect to a Dimensions database 48, 146
connection functions 144
constants

PCMS_BASELINE 36
PCMS_CHDOC 36
PCMS_CUSTOMERS 36
PCMS_EVENT_POST_OP 165
PCMS_EVENT_PRE_OP 165
PCMS_EVENT_VALIDATE_OP 165

PCMS_ITEM 36
PCMS_PART 36
PCMS_REL_AFF 36
PCMS_REL_BREAKDOWN 36
PCMS_REL_DEP 36
PCMS_REL_DERIVED 36
PCMS_REL_INFO 36
PCMS_REL_IRT 36
PCMS_REL_OWN 36
PCMS_REL_PRED 36
PCMS_REL_SUCC 36
PCMS_REL_TOP 36
PCMS_REL_USE 36
PCMS_USER 36
PCMS_WORKSET 36

contacting technical support 11
conventions, typographical 10

D

Dimensions Event Callout Interface 162
disconnect from a Dimensions database 50,

149
documentation

ordering hard-copy manuals 11
PVCS Dimensions Developer’s Toolkit Reference Guide

188 Index
E
even callout interface 162
event architecture 16
events

designing 173
pointers, and 176
post-events 165
pre-events 165
shared libraries, and 162
types 166
unsupported function calls 182
validate 165
writing 175

execute a Dimensions command 159
asynchronously 59
synchronously 52

F
find Dimensions objects and return complete

objects 82
find Dimensions objects and return uids 76
free a list of values 114
free Dimensions object structures 103
free memory 134, 158
function call results 22

G

get attribute
definition 106
definition number 104

get attribute’s list of values 108
get change document descriptions 131
get Dimensions object

attributes 101
details by specification 95
details by uid 97

relationships 70
reverse relationships 73

get Dimensions process model information
91

get input file description 61
get the Dimensions command 138
get the last Dimensions message 150, 152
get user’s current workset 67

H
hard-copy manuals, ordering 11

I
install idle checker 46
is change document object in secondary

catalog 81

M

memory allocation 37
MERANT, contacting 11

O
obtain

pending user structures 118
role section names for a product 120
user relationship subtypes 125
user role structures 115

online help
accessing 10
for the command-line interface 10
for the GUI 10
PVCS Dimensions Developer’s Toolkit Reference Guide

Index 189
online manuals
ordering hard-copy manuals 11

ordering hard-copy manuals 11

P
pcms_api.lib 20, 145
pcms_api.so 20
pcms_api_sql_uk.msb 160
PCMS_ERROR 21
PCMS_FAIL 21
PCMS_OK 20
PcmsAttrDefInit 106
PcmsAttrGetLov 108
PcmsAttrValidate 112
PcmsCallbackStruct 23
PcmsCheckMessages 63
PcmsClntApiConnect 146
PcmsClntApiDisconnect 149
PcmsClntApiExecCommand 159
PcmsClntApiFree 158
PcmsClntApiGetLastErro 150
PcmsClntApiGetLastErrorEx 152
PcmsClntApiModeBinary 154
PcmsClntApiModeText 156
PcmsClntApiSilentConnect 147
PcmsCntrlPlanGet 91
PcmsConnect 48
PcmsDisconnect 50
PcmsEventStruct 30
PcmsEvntCalloc 136
PcmsEvntCalloc() 37
PcmsEvntFree 134
PcmsEvntFree() 37
PcmsEvntMalloc 135
PcmsEvntMalloc() 37
PcmsEvntRealloc 137
PcmsEvntRealloc() 37
PcmsExecCommand 52
PcmsFullQuery 82
PcmsGetAttrDefNum 104
PcmsGetAttrFile 131

PcmsGetAttrs 101
PcmsGetCandidates 129
PcmsGetCommandLine 138
PcmsGetConnectDesc 61
PcmsGetPendingUsers 118
PcmsGetRSAttrs 122
PcmsGetRSNames 120
PcmsGetUserRelTypes 125
PcmsGetUserRoles 115
PcmsGetWsetObj 67
PcmsInitSpec 95
PcmsInitUid 97
PcmsLcStruct 29
PcmsLovFree 114
PcmsObjAttrDefStruct 24
PcmsObjAttrStruct 23
PcmsObjFree 103
PcmsObjGetBackRels 73
PcmsObjGetRels 70
PcmsObjInSecondary 81
PcmsObjStruct 22
PcmsPendGet 86
PcmsPendingUserStruct 28
PcmsPendStruct 30
PcmsPendWhoGet 89
PcmsPopulate 127
PcmsQuery 76
PcmsRelStruct 26
PcmsRelTypeStruct 25
PcmsRoleStruct 28
PcmsSendCommand 59
PcmsSetAttrs 99
PcmsSetCallback 54
PcmsSetDbErrorCallback 57
PcmsSetDirectory 65
PcmsSetIdleChecker 46
PcmsSetWsetObj 69
PcmsTypeStruct 29
PcmsUserRoleStruct 27
populate an object’s attributes values 127
post-events 165
pre-events 165
printed manuals

ordering 11
PVCS Dimensions Developer’s Toolkit Reference Guide

190 Index
R
re-allocate memory 137
results of function calls 22
retrieve

attribute numbers in a role section 122
candidates for delegation 129
Dimensions objects pending for a user 86
users for object 89

return codes 20

S
set Dimensions API server callback 54
set Dimensions object attributes 99
set file transfer mode to ASCII 156
set file transfer mode to binary 154
set server error callback 57
set user’s current workset 69
system-defined attributes 31

T

typographical conventions 10

U
user-defined attributes 31

V
validate an attribute value 112
validate events 165

W
windows.h 144
PVCS Dimensions Developer’s Toolkit Reference Guide

	Table of Contents
	Welcome to Dimensions
	Typographical Conventions
	Ordering Hard-Copy Manuals
	Contacting Technical Support

	1 What is the Dimensions Toolkit Interface?
	Overview
	Positioning Your Solutions within the DTK
	Client Architecture
	Event Architecture
	Interactions between the Two Architectures

	Scope of the DTK Architecture

	2 Writing Dimensions DTK Applications
	Introduction
	DTK Return Codes
	DTK Data Structures
	PcmsObjStruct
	PcmsCallbackStruct
	PcmsObjAttrStruct
	PcmsObjAttrDefStruct
	PcmsRelTypeStruct
	PcmsRelStruct
	PcmsUserRoleStruct
	PcmsPendingUserStruct
	PcmsRoleStruct
	PcmsLcStruct
	PcmsTypeStruct
	PcmsPendStruct
	PcmsEventStruct

	DTK System Attribute Definitions
	DTK Constant Definitions
	Memory Allocation within the DTK
	Usage of the Functions

	3 DTK API Functions for C/C++
	Introduction
	Memory Allocation by DTK Functions
	PcmsSetIdleChecker - Install Idle Checker
	PcmsConnect - Connect to Dimensions Database
	PcmsDisconnect - Disconnect from a Dimensions Database
	PcmsExecCommand - Execute Dimensions Command Synchronously
	PcmsSetCallback - Set Dimensions API Server Callback
	PcmsSetDbErrorCallback - Set Server Error Callback
	PcmsSendCommand - Execute Dimensions Command Asynchronously
	PcmsGetConnectDesc - Get Input File Descriptor
	PcmsCheckMessages - Check Results of Dimensions Command
	PcmsSetDirectory - Change Dimensions Default Directory
	PcmsGetWsetObj - Get User's Current Workset
	PcmsSetWsetObj - Set User's Current Workset
	PcmsObjGetRels - Get Dimensions Object Relationships
	PcmsObjGetBackRels - Get Dimensions Object Reverse Relationships
	PcmsQuery - Find Dimensions Objects, returning Uids
	PcmsObjInSecondary - Is Change Document Object in Secondary Catalog
	PcmsFullQuery - Find Dimensions Objects, returning Complete Objects
	PcmsPendGet - Retrieve Dimensions Objects Pending for a User
	PcmsPendWhoGet - Retrieve Users for Object
	PcmsCntrlPlanGet - Get Dimensions Process Model Information
	PcmsInitSpec - Get Dimensions Object Details by Specification
	PcmsInitUid - Get Dimensions Object Details by Uid
	PcmsSetAttrs - Set Dimensions Object Attributes
	PcmsGetAttrs - Get Dimensions Object Attributes
	PcmsObjFree - Free Dimensions Object Structures
	PcmsGetAttrDefNum - Get Attribute Definition Number
	PcmsAttrDefInit - Get Attribute Definition
	PcmsAttrGetLov - Get Attribute's List of Values
	PcmsAttrValidate - Validate an Attribute Value
	PcmsLovFree - Free a List of Values
	PcmsGetUserRoles - Obtain User Role Structures
	PcmsGetPendingUsers - Obtain Pending User Structures
	PcmsGetRSNames - Obtain Role Section Names for a Product
	PcmsGetRSAttrs - Retrieve Attribute Numbers in a Role Section
	PcmsGetUserRelTypes - Obtain User Relationship Subtypes
	PcmsPopulate - Populate an Object's Attributes Values
	PcmsGetCandidates - Retrieve Candidates for Delegation
	PcmsGetAttrFile - Get Change Document Descriptions
	PcmsEvntFree – Free Memory
	PcmsEvntMalloc – Allocate Memory
	PcmsEvntCalloc – Allocate Zero Initialized Memory
	PcmsEvntRealloc – Re-allocate Memory
	PcmsGetCommandLine – Get the Dimensions Command
	Attribute Macros
	Initialize PcmsObjStruct attrs
	Add attrDef Structures
	Single-Value Attributes (SVA)
	Multi-Value Attributes (MVA)

	4 DTK API Functions for Win32 Client Installations
	Introduction
	Building Client Applications
	Sample Code Fragment
	PcmsClntApiConnect - Connect to a Dimensions Database
	PcmsClntApiSilentConnect - Connect Silently to a Dimensions Database
	PcmsClntApiDisconnect - Disconnect from a Dimensions Database
	PcmsClntApiGetLastError - Get the Last Dimensions Message
	PcmsClntApiGetLastErrorEx - Get the Last Dimensions Message
	PcmsClntApiModeBinary - Set File Transfer Mode to Binary
	PcmsClntApiModeText - Set File Transfer Mode to ASCII
	PcmsClntApiFree – Free Memory
	PcmsClntApiExecCommand - Execute a Dimensions Command
	Additional Supported DTK Functions

	5 Dimensions Events Callout Interface
	Description
	Shared Libraries
	Public Function Call
	Event Callout Interface
	Validate Events
	Pre-events
	Post-events
	Event Types

	Determining the Event you want
	First and Second Event Calls
	Event Call Summary
	Writing a DTK Callout Event
	Is an Event the Solution for you?
	Designing your Event
	Writing your Event

	DTK Event Internals
	Changing System Attributes on Validate Events
	Changing User Attributes on Validate Events
	Recommendations on how to Change Attribute Values
	Calling DTK Functions within Events
	Specialist DTK Event Functions
	Unsupported DTK Function Calls from within an Event

	Using the ptrEventInfo in Events
	Event Examples
	Events - A Final Word and a Warning

	A Known DTK Event Issues
	Missing Events

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	M
	O
	P
	R
	S
	T
	U
	V
	W

